Advertisement

Ambiguous Classes in the Games μ-Calculus Hierarchy

  • André Arnold
  • Luigi Santocanale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2620)

Abstract

Every parity game is a combinatorial representation of a closed Boolean μ-term. When interpreted in a distributive lattice every Boolean μ-term is equivalent to a fixed-point free term. The alternationdepth hierarchy is therefore trivial in this case. This is not the case for non distributive lattices, as the second author has shown that the alternation -depth hierarchy is infinite.

In this paper we show that the alternation-depth hierarchy of the games μ-calculus, with its interpretation in the class of all complete lattices, has a nice characterization of ambiguous classes: every parity game which is equivalent both to a game in σn+1 and to a game πn+1 is also equivalent to a game obtained by composing games in σn and πn.

References

  1. [1]
    A. Arnold. The μ-calculus alternation-depth hierarchy is strict on binary trees. Theor. Inform. Appl.,33(4–5):329–339, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Arnold and D. Niwiński. Fixed point characterization of weak monadic logic definable sets of trees. In Tree automata and languages (Le Touquet, 1990), volume 10 of Stud. Comput. Sci. Artificial Intelligence, pages 159–188. North-Holland, Amsterdam, 1992.Google Scholar
  3. [3]
    A. Arnold and D. Niwiński. Rudiments of μ-calculus, volume 146 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2001.Google Scholar
  4. [4]
    A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial information. To appear in Theoret. Comput. Sci., 2002.Google Scholar
  5. [5]
    A. Blass. A game semantics for linear logic. Ann. Pure Appl. Logic,56(1–3):183–220, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci., 195(2):133–153, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. D'Agostino and M. Hollenberg. Logical questions concerning the μ-calculus: interpolation, Lyndon and łoś-Tarski. J. Symbolic Logic, 65(1):310–332, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Dziembowski, S. Jurdziński and I. Walukiewicz. How much memory is needed to win infinite games? In Twelth Annual IEEE Symposium on Logic in Computer Science, pages 99–110. IEEE Computer Society Press, 1997.Google Scholar
  9. [9]
    E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the μ-calculus and its fragments. Theoret. Comput. Sci., 258(1–2):491–522, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Freese, J. Ježek, and J. B. Nation. Free lattices. American Mathematical Society, Providence, RI, 1995.Google Scholar
  11. [11]
    A. Joyal. Free lattices, communication and money games. In Logic and scientific methods (Florence, 1995), pages 29–68. Kluwer Acad. Publ., Dordrecht, 1997.Google Scholar
  12. [12]
    A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.Google Scholar
  13. [13]
    G. Lenzi. A hierarchy theorem for the μ-calculus. In Automata, languages and programming (Paderborn, 1996), volume 1099 of Lecture Notes in Comput. Sci., pages 87–97. Springer, Berlin, 1996.Google Scholar
  14. [14]
    A. W. Mostowski. Regular expressions for in.nite trees and a standard form of automata. In Computation theory (Zaborów, 1984), volume 208 of Lect. Notes in Comput. Sci., pages 157–168. Springer, Berlin, 1985.Google Scholar
  15. [15]
    D. Niwinski. On fixed-point clones. In Automata, languages and programming, volume 226 of Lecture Notes in Comput. Sci., pages 464–473, 1986.Google Scholar
  16. [16]
    D. Niwiński. Fixed point characterization of in.nite behavior of finite-state systems. Theoret. Comput. Sci., 189(1–2):1–69, 1997.CrossRefMathSciNetzbMATHGoogle Scholar
  17. [17]
    D. Niwiński and I. Walukiewicz. Relating hierarchies of word and tree automata. In STACS 98 (Paris, 1998), volume 1373 of Lecture Notes in Comput. Sci., pages 320–331. Springer, Berlin, 1998.CrossRefGoogle Scholar
  18. [18]
    L. Santocanale. The alternation hierarchy for the theory of μ-lattices. Theory and Applications of Categories, 9:166–197, January 2002.Google Scholar
  19. [19]
    L. Santocanale. A calculus of circular proofs and its categorical semantics. In FOSSACS02, volume 2303 of Lecture Notes in Comput. Sci., pages 357–371, 2002.Google Scholar
  20. [20]
    L. Santocanale. Free μ-lattices. J. Pure Appl. Algebra, 168(2–3):227–264, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    L. Santocanale. Parity games and μ-bicomplete categories. Theor. Inform. Appl., (36):195–227, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Takeuti. Proof theory. North-Holland Publishing Co., Amsterdam, 1975. Studies in Logic and the Foundations of Mathematics, Vol. 81.Google Scholar
  23. [23]
    W. Thomas. Languages, automata, and logic. In Rozenberg G. and Salomaa A., editors, Handbook of Formal Language Theory, volume III, pages 389–455. Springer-Verlag, New York, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • André Arnold
    • 1
  • Luigi Santocanale
    • 1
  1. 1.LaBRIUniversité Bordeaux 1Bordeaux

Personalised recommendations