Handling Encryption in an Analysis for Secure Information Flow

  • Peeter Laud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2618)


This paper presents a program analysis for secure information flow. The analysis works on a simple imperative programming language containing a cryptographic primitive—encryption—as a possible operation. The analysis captures the intuitive qualities of the (lack of) information flow from a plaintext to its corresponding ciphertext. The analysis is proved correct with respect to a complexity-theoretical definition of the security of information flow. In contrast to the previous results, the analysis does not put any restrictions on the structure of the program, especially on the ways of how the program uses the encryption keys.


Encryption Scheme Secure Information Security Parameter Public Output Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Information and Computation, 148(1):1–70, Jan. 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Abadi and J. Jürjens. Formal Eavesdropping and Its Computational Interpretation. In proc. of TACS 2001 (LNCS 2215), pages 82–94.Google Scholar
  3. 3.
    M. Abadi and P. Rogaway. Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption). In proc. of International Conference IFIP TCS 2000 (LNCS 1872), pages 3–22.Google Scholar
  4. 4.
    M. Backes. Cryptographically Sound Analysis of Security Protocols. PhD thesis, Universität des Saarlandes, 2002.Google Scholar
  5. 5.
    M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on Computer Systems, 8(1):18–36, Feb. 1990.CrossRefGoogle Scholar
  6. 6.
    P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, Apr. 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Denning. A Lattice Model of Secure Information Flow. Communications of the ACM, 19(5):236–243, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Denning and P. Denning. Certification of Programs for Secure Information Flow. Communications of the ACM, 20(7):504–513, 1977.zbMATHCrossRefGoogle Scholar
  9. 9.
    J. Goguen and J. Meseguer. Security Policies and Security Models. In proc. of IEEE S&P 1982, pages 11–20.Google Scholar
  10. 10.
    J. Gray III. Probabilistic Noninterference. In proc. of IEEE S&P 1990, pages 170–179.Google Scholar
  11. 11.
    P. Laud. Semantics and Program Analysis of Computationally Secure Information Flow. In proc. of ESOP 2001 (LNCS 2028), pages 77–91.Google Scholar
  12. 12.
    P. Laud. Computationally Secure Information Flow. PhD thesis, Universität des Saarlandes, 2002.Google Scholar
  13. 13.
    K. Leino and R. Joshi. A Semantic Approach to Secure Information Flow. In proc. of Matehematics of Program Construction’ 98 (LNCS 1422), pages 254–271.Google Scholar
  14. 14.
    P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A Probabilistic Poly-Time Framework for Protocol Analysis. In proc. of ACM CCS’ 98, pages 112–121.Google Scholar
  15. 15.
    P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic Polynomial-Time Equivalence and Security Analysis. In proc. of the World Congress on Formal Methods in the Development of Computing Systems’ 99 (LNCS 1708), pages 776–793.Google Scholar
  16. 16.
    J. Mitchell. Probabilistic Polynomial-Time Process Calculus and Security Protocol Analysis. In proc. of ESOP 2001 (LNCS 2028), pages 23–29.Google Scholar
  17. 17.
    H. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction.Wiley, 1992.Google Scholar
  18. 18.
    B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic Security of Reactive Systems. In proc. of Workshop on Secure Architectures and Information Flow (ENTCS 32), 2000.Google Scholar
  19. 19.
    B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In proc. of ACM CCS 2000, pages 245–254.Google Scholar
  20. 20.
    B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to Secure Message Transmission. In proc. of IEEE S&P 2001, pages 184–200.Google Scholar
  21. 21.
    F. Thayer, J. Herzog, and J. Guttman. Strand Spaces: Proving Security Protocols Correct. Journal of Computer Security, 7(2/3):191–230, 1999.Google Scholar
  22. 22.
    D. Volpano. Secure Introduction of One-way Functions. In proc. of CSFW’ 00, pages 246–254.Google Scholar
  23. 23.
    D. Volpano and G. Smith. Verifying Secrets and Relative Secrecy. In proc. of POPL 2000, pages 268–276.Google Scholar
  24. 24.
    D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis. Journal of Computer Security, 4(2,3):167–187, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Peeter Laud
    • 1
  1. 1.Tartu University and Cybernetica ASUSA

Personalised recommendations