Data Mining for Data Classification Based on the KNN-Fuzzy Method Supported by Genetic Algorithm

  • José L. A. Rosa
  • Nelson F. F. Ebecken
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2565)

Abstract

This paper presents a classification method based on the KNN-Fuzzy classification algorithm, supported by Genetic Algorithm. It discusses how to consider data clustering according to the Fuzzy logic and its consequences in the area of Data Mining. Analyses are made upon the results obtained in the classification of several data bases in order to demonstrate the proposed theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ANDERBERG, MICHAEL R. Cluster Analysis for Applications. Academic Press, 1973.Google Scholar
  2. 2.
    MITCHIE, D., SPIEGELHALTER, D. J., TAYLOR, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, 1994.Google Scholar
  3. 3.
    MANLY, B. F. J. Multivariate Statistical Methods. A Primer, Chapman & Hall, London, 1986.Google Scholar
  4. 4.
    KELLER, J. M., GRAY, M. R., GIVENS JR., J. A., A Fuzzy K-Nearest Neighbor Algorithm, IEEE Transactions on Systems, Man, and Cybernetics, v. SMC-15, n. 4, pp. 258–260, July/August 1985.Google Scholar
  5. 5.
    HEATH, F. G., Origins of Binary Code, Scientific American, v.227, n.2, pp.76–83, August 1972.CrossRefGoogle Scholar
  6. 6.
    ESPÍNDOLA, ROGÉRIO P. Optimizing Classification Fuzzy Rules by Genetic Algorithms, M.Sc thesys, COPPE/PEC, May, 1999.Google Scholar
  7. 10.
    KDD-Sisyphus. KDD Sisyphus Workshop—Data Preparation, Preprocessing and Reasoning for Real-World Data Mining Applications. Internet: http://research.swisslife.ch/kdd-sisyphus, 1998.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • José L. A. Rosa
    • 1
  • Nelson F. F. Ebecken
    • 1
  1. 1.COPPEUniversidade Federal do Rio de JaneiroBrazil

Personalised recommendations