SLEPc: Scalable Library for Eigenvalue Problem Computations

  • Vicente Hernández
  • Jose E. Román
  • Vicente Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2565)


The eigenvalue problem is one of the most important problems in numerical linear algebra. Several public domain software libraries are available for solving it. In this work, a new petsc-based package is presented, which is intended to be an easy-to-use yet efficient object-oriented parallel framework for the solution of standard and generalised eigenproblems, either in real or complex arithmetic. The main objective is to allow the solution of real world problems in a straightforward way, especially in the case of large software projects. Topics. Numerical methods, parallel and distributed computing.


Eigenvalue Problem Krylov Subspace Numerical Linear Algebra Inverse Iteration Spectral Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-Hermitian eigenvalue problems. Technical report CS-97-355, University of Tennessee, Knoxville, March 1997. LAPACK Working Note 123. 387Google Scholar
  2. [2]
    Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000. 378Google Scholar
  3. [3]
    Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc home page. See 381
  4. [4]
    Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc Users Manual. Technical Report ANL-95/11-Revision 2.1.1, Argonne National Laboratory, 2001. 381Google Scholar
  5. [5]
    Gene H. Golub and Henk A. Van der Vorst. Eigenvalue computation in the 20th century. Journal of Computational and Applied Mathematics, 123(1–2):35–65, November 2000. 378zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Vicente Hernández, José E. Román, Antonio M. Vidal, and Vicent Vidal. Calculation of Lambda Modes of a Nuclear Reactor: a Parallel Implementation Using the Implicitly Restarted Arnoldi Method. Lecture Notes in Computer Science, 1573:43–57, 1999. 387Google Scholar
  7. [7]
    M. Heroux et al. Trilinos Project home page. See ?mheroux/Trilinos. 390
  8. [8]
    R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. 379Google Scholar
  9. [9]
    O.A. Marques. BLZPACK: Description and user’s guide. Technical Report TR/PA/95/30, CERFACS, Toulouse, France, 1995. 380Google Scholar
  10. [10]
    O.A. Marques and L.A. Drummond. Advanced Computational Testing and Simulation (ACTS) Toolkit home page. See 377
  11. [11]
    K. J. Maschho. and D.C. Sorensen. PARPACK: An Efficient Portable Large Scale Eigenvalue Package for Distributed Memory Parallel Architectures. Lecture Notes in Computer Science, 1184:478–486, 1996. 379Google Scholar
  12. [12]
    K. Wu and H.D. Simon. Thick-restart Lanczos method for symmetric eigenvalue problems. Lecture Notes in Computer Science, 1457:43–55, 1998. 380Google Scholar
  13. [13]
    Kesheng Wu and Horst Simon. A parallel Lanczos method for symmetric generalized eigenvalue problems. Technical Report LBNL-41284, Lawrence Berkeley National Laboratory, 1997. 380Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vicente Hernández
    • 1
  • Jose E. Román
    • 1
  • Vicente Vidal
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations