Lignin Biosynthesis and Degradation — a Major Challenge for Computational Chemistry

  • Bo Durbeej
  • Yan-Ni Wang
  • Leif A. Eriksson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2565)

Abstract

In the present chapter we review a series of computational studies related to lignin biosynthesis and degradation, with the aim to understand at a molecular level processes crucial to paper and pulp industries. Due to the complexity of the problem, a wide variety of computational approaches are employed, each with its own merits. From the theoretical studies we are able to draw conclusions regarding the behavior of lignol monomers and their corresponding dehydrogenated radicals in aqueous solution and in lipid bilayers, and reaction mechanisms, conformations and relative stabilities of lignol dimers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Newman, R. in Microfibril Angle In Wood. IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality. Ed. B.G. Butterfield, Westport, New Zealand, p. 81, 1998.Google Scholar
  2. [2]
    Heyn, A.N.J., J. Ultrastruct. Res. 1969, 26, 52.CrossRefGoogle Scholar
  3. [3]
    Higuchi, T., Wood Sci. Technol. 1990, 24, 23.CrossRefGoogle Scholar
  4. [4]
    Baucher,M.B. Monties, M. Van Montagu and W. Boerjan, Critical Reviews in Plant Sciences. 1998, 17, 125.CrossRefGoogle Scholar
  5. [5]
    Cotê, W.A., Cellular Ultrastructure of Woody Plants. Syracuse Univ. Press, New York, Syracuse, 1965.Google Scholar
  6. [6]
    Weir, N.A., J. Arct and A. Ceccarelli, Polymer Degradation and Stability 1995, 47, 289, and references therein.CrossRefGoogle Scholar
  7. [7]
    Freudenberg, K., Science 1965, 148, 595.CrossRefGoogle Scholar
  8. [8]
    Higuchi, T., in Biosynthesis and Biodegradation of Wood Components. Ed. T. Higuchi. Academic Press, Orlando. p 141, 1985.Google Scholar
  9. [9]
    Davin, L.B., H.-B. Wang, A.L. Crowell, D.L. Bedgar, D.M. Martin, S. Sarkanen and N.G. Lewis, Science 1997, 275, 362.CrossRefGoogle Scholar
  10. [10]
    Monties, B., in Methods in Plant Biochemistry: Plant Phenolics, Vol. 1. Eds. P.M. Dey, J.B. Harborne. Academic Press, New York. p 113, 1989.Google Scholar
  11. [11]
    Monties, B., in The Biochemistry of Plant Phenolics (Ann. Proc. Phytochem. Soc. Eur. Vol 25), p 161, 1985.Google Scholar
  12. [12]
    Monties, B., Polym. Degrad. Stabil., 1998, 59, 53.CrossRefGoogle Scholar
  13. [13]
    Sjöström, E., Wood Chemistry—Fundamentals and Applications, 2nd ed. Acad. Press, San Diego, CA, 1993.Google Scholar
  14. [14]
    Lundquist, K., in Methods in Lignin Chemistry. Eds. S.Y. Lin, C.W. Dence. Springer-Verlag, Berlin. p 242, 1992.Google Scholar
  15. [15]
    Robert, D., in Methods in Lignin Chemistry. Eds. S.Y. Lin, C.W. Dence. Springer-Verlag, Berlin. p 250, 1992.Google Scholar
  16. [16]
    Sakakibara, A., Wood Sci. Technol. 1980, 14, 89.CrossRefGoogle Scholar
  17. [17]
    Stomberg, R. and K. Lundquist, Acta Chem. Scand. 1986, A40, 705.CrossRefGoogle Scholar
  18. [18]
    Stomberg, R., M. Hauteville and K. Lundqvist, Acta Chem. Scand. 1988, B42, 697.CrossRefGoogle Scholar
  19. [19]
    Elder, T.J., M.L. McKee and S.D. Worley, Holzforschung 1988, 42, 233.CrossRefGoogle Scholar
  20. [20]
    Faulon, J.-L. and P.G. Hatcher, Energy and Fuels 1994, 8, 402.CrossRefGoogle Scholar
  21. [21]
    Simon, J.P. and K.-E.L. Eriksson, Holzforschung 1995, 49, 429.CrossRefGoogle Scholar
  22. [22]
    Simon, J.P. and K.-E.L. Eriksson, J. Mol. Struct. 1996, 384, 1.CrossRefGoogle Scholar
  23. [23]
    Simon, J.P. and K.-E.L. Eriksson, Holzforschung 1998, 52, 287.Google Scholar
  24. [24]
    Durbeej, B. and L.A. Eriksson, Holzforschung, in press, 2002.Google Scholar
  25. [25]
    Glasser, W.G. and H.R. Glasser, Macromolecules 1974, 7, 17.CrossRefGoogle Scholar
  26. [26]
    Glasser, W.G. and H.R. Glasser, Paperi Ja Puu 1981, 2, 71.Google Scholar
  27. [27]
    Glasser, W.G., H.R. Glasser and N. Morohoshi. Macromolecules 1981, 14, 253.CrossRefGoogle Scholar
  28. [28]
    Lange, H., B. Wagner, J.F. Yan, E.W. Kaler and J.L. McCarthy, in Seventh Intl. Symposium on Wood and Pulping Chemistry, Vol 1.Beijing. p 111, 1993.Google Scholar
  29. [29]
    Roussel, M.R. and C. Lim, Macromolecules 1995, 28, 370.CrossRefGoogle Scholar
  30. [30]
    Roussel, M.R. and C. Lim, J. Comp. Chem. 1995, 16, 1181.CrossRefGoogle Scholar
  31. [31]
    Jurasek, L., J. Pulp Paper Sci. 1995, 21, J274.Google Scholar
  32. [32]
    Jurasek, L., J. Pulp Paper Sci. 1996, 22, J376.Google Scholar
  33. [33]
    Durbeej, B. and L.A. Eriksson, in preparation.Google Scholar
  34. [34]
    Elder, T.J. and R.M. Ede, in Proceedings of the 8 th International Symposium on Wood and Pulping Chemistry, Vol. 1. Gummerus Kirjapaino Oy, Helsinki. p 115, 1995.Google Scholar
  35. [35]
    Mårtensson, O. and G. Karlsson, Arkiv för Kemi 1968, 31, 5.Google Scholar
  36. [36]
    Elder, T.J. and S.D. Worley, Wood Sci. Technol. 1984, 18, 307.CrossRefGoogle Scholar
  37. [37]
    Durbeej, B. and L.A. Eriksson, Holzforschung, in press, 2002..Google Scholar
  38. [38]
    Wang, Y.-N. and L.A. Eriksson, submitted for publication.Google Scholar
  39. [39]
    Wang, Y.-N. And L. A. Eriksson, in preparation.Google Scholar
  40. [40]
    Onysko, K.A., Biotech. Adv. 1993, 11, 179.CrossRefGoogle Scholar
  41. [41]
    Reid, I.D. and M.G. Paice, FEMS Microbiol. Rev. 1994, 13, 369.CrossRefGoogle Scholar
  42. [42]
    Viikari, L., A. Kantelinen, J. Sundqvist and M. Linko, M., FEMS Microbiol. Rev. 1994, 13, 335.CrossRefGoogle Scholar
  43. [43]
    Cornell, W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell and P.A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179.CrossRefGoogle Scholar
  44. [44]
    Allinger, N.L., Y.H. Yuh, J.-H. Lii, J. Am. Chem. Soc. 1989, 111, 855.Google Scholar
  45. [45]
    Jorgensen, W.L., J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Kelwin, J. Chem. Phys. 1983, 79, 926.CrossRefGoogle Scholar
  46. [46]
    Weiner, S.J., P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta and P. Weiner, J. Am. Chem. Soc. 1984, 106, 765.CrossRefGoogle Scholar
  47. [47]
    Smondyrev, A.M. and M.L. Berkowitz, J. Comp. Chem. 1999, 20, 531.CrossRefGoogle Scholar
  48. [48]
    Söderhäll, J.A. and A. Laaksonen, J. Phys. Chem. B 2001, 105, 9308.CrossRefGoogle Scholar
  49. [50]
    Miertus, S., E. Scrocco and J. Tomasi, J. Chem Phys. 1981, 55, 117.CrossRefGoogle Scholar
  50. [51]
    Miertus, S. and J. Tomasi, Chem Phys. 1982, 65, 239.CrossRefGoogle Scholar
  51. [52]
    Cossi, M., V. Barone, R. Cammi, R. and J. Tomasi, Chem. Phys. Lett. 1996, 255, 327.CrossRefGoogle Scholar
  52. [53]
    Hohenberg, P. and W. Kohn, Phys. Rev. B 1964, 136, 864.CrossRefMathSciNetGoogle Scholar
  53. [54]
    Kohn, W. and L.J. Sham, Phys. Rev. A 1965, 140, 1133.CrossRefMathSciNetGoogle Scholar
  54. [55]
    Parr, R.G. and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford Univ. Press: N.Y., 1989.Google Scholar
  55. [56]
    Gross, E.K.U. and R.M. Dreizler, Density Functional Theory, Springer, 1992.Google Scholar
  56. [57]
    Koch, W. and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory,Wiley-VCH: Weinheim, 2001.Google Scholar
  57. [58]
    Becke, A.D., J. Chem. Phys. 1993, 98, 5648.CrossRefGoogle Scholar
  58. [59]
    Lee, C., W. Yang and R.G. Parr, Phys. Rev. 1988, B37, 785.Google Scholar
  59. [60]
    Stevens, P.J., F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem. 1994, 98, 11623.CrossRefGoogle Scholar
  60. [62]
    Berendsen, H.J.C., J.P.M. Postma, W.F. Gunsteren, A. DiNola and J.R. Haak, J. Chem. Phys. 1984, 81, 3684.CrossRefGoogle Scholar
  61. [63]
    Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids. Oxford Science, Oxford, 1987.MATHGoogle Scholar
  62. [64]
    Darden, T., D. York and L.G. Pedersen, J. Chem. Phys. 1993, 98, 10089.CrossRefGoogle Scholar
  63. [65]
    Pedersen, L.G., J. Chem. Phys. 1995, 103, 3668.CrossRefGoogle Scholar
  64. [66]
    Berger, O., O. Edholm and F. Jähnig, Biophys. J. 1997, 72, 2002.Google Scholar
  65. [67]
    Alper, H.E. and T.R. Stouch, J. Phys. Chem. 1995, 99, 5724.CrossRefGoogle Scholar
  66. [68]
    Mason, R.P. and D.W. Chester, Biophys. J. 1989, 56, 1193.Google Scholar
  67. [69]
    Wu, E.-S., K. Jacobson and D. Papahadjopoulos, Biochemistry. 1977, 16, 3936.CrossRefGoogle Scholar
  68. [70]
    Stewart, J.J.P, J. Comp. Chem. 1989, 10, 209.CrossRefGoogle Scholar
  69. [71]
    Stewart, J.J.P, J. Comp. Chem. 1989, 10, 221.CrossRefGoogle Scholar
  70. [72]
    Miksche, G., Acta Chem. Scand. 1972, 26, 4137.CrossRefGoogle Scholar
  71. [73]
    Chioccara, F., S. Poli, B. Rindone, T. Pilati, G. Brunow, P. Pietikäinen and H. Setälä, Acta Chem. Scand. 1993, 47, 610.CrossRefGoogle Scholar
  72. [74]
    Terashima, N. and R.H. Atalla, in Proceedings of the 8 th International Symposium on Wood and Pulping Chemistry, Vol. 1. Gummerus Kirjapaino Oy, Helsinki. p 69, 1995.Google Scholar
  73. [75]
    Houtman, C.J., Holzforschung 1999, 53, 585.CrossRefGoogle Scholar
  74. [76]
    Tanahashi, M., H. Takeuchi and T. Higuchi, Wood Res. 1976, 61, 44.Google Scholar
  75. [77]
    Himo, F., A. Gräslund and L.A. Eriksson, Biophys. J. 1997, 72, 1556.CrossRefGoogle Scholar
  76. [78]
    Himo, F., G.T. Babcock and L.A. Eriksson, Chem. Phys. Lett. 1999, 313, 374.CrossRefGoogle Scholar
  77. [79]
    Gräslund, A. and M. Sahlin, Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 259.CrossRefGoogle Scholar
  78. [80]
    Roos, B., in Advanced Chemistry and Physics Vol. 69 (Ab Initio Methods in Quantum Chemistry, Part II). Ed. K.P. Lawley. Wiley, New York. p 399, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bo Durbeej
    • 1
    • 2
  • Yan-Ni Wang
    • 1
    • 3
  • Leif A. Eriksson
    • 1
  1. 1.Division of Structural and Computational Biophysics Department of BiochemistryUppsala UniversityUppsalaSweden
  2. 2.Department of Quantum ChemistryUppsala UniversityUppsalaSweden
  3. 3.Advanced Biomedical Computing Center SAIC FrederickNational Cancer Institute at FrederickFrederickUSA

Personalised recommendations