Ontogenetic Development and Fault Tolerance in the POEtic Tissue

  • Gianluca Tempesti
  • Daniel Roggen
  • Eduardo Sanchez
  • Yann Thoma
  • Richard Canham
  • Andy M. Tyrrell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2606)


In this article, we introduce the approach to the realization of ontogenetic development and fault tolerance that will be implemented in the POEtic tissue, a novel reconfigurable digital circuit dedicated to the realization of bio-inspired systems. The modelization in electronic hardware of the developmental process of multi-cellular biological organisms is an approach that could become extremely useful in the implementation of highly complex systems, where concepts such as self-organization and fault tolerance are key issues. The concepts presented in this article represent an attempt at finding a useful set of mechanisms to allow the implementation in digital hardware of a bio-inspired developmental process with a reasonable overhead.


Fault Tolerance Biological Organism Ontogenetic Development Evolvable Hardware Spike Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovici, M., Stroud, C.: Complete Testing and Diagnosis of FPGA Logic Blocks. IEEE Trans. on VLSI Systems 9:1 (2001).Google Scholar
  2. 2.
    Bradley, D.W., Tyrrell, A.: Multi-Layered Defence Mechanisms: Architecture, Implementation, and Demonstration of a Hardware Immune System. Proc. 4th Int. Conf. on Evolvable Systems, LNCS 2210 (2001), 140–150.Google Scholar
  3. 3.
    Canham, R.O., Tyrrell, A.M.: A Multilayered Immune System for Hardware Fault Tolerance within an Embryonic Array. Proc. 1st Int. Conf. on Artificial Immune Systems (ICARIS 2002), Canterbury, UK, September 2002.Google Scholar
  4. 4.
    Coen, E.: The Art of Genes. Oxford University Press (1999), New York.Google Scholar
  5. 5.
    Edwards, R.T.: Circuit Morphologies and Ontogenies. Proc. 2002 NASA/DoD Conf. on Evolvable Hardware, IEEE Computer Society Press (2002), 251–260.Google Scholar
  6. 6.
    Eggenberger, P.: Cell Interactions as a Control Tool of Developmental Processes for Evolutionary Robotics. From Animals to Animats 4: Proc. 4th Int. Conf. on Simulation of Adaptive Behavior, MIT Press—Bradford Books (1996), 440–448.Google Scholar
  7. 7.
    Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Halliday, D., Rosenberg, J., Moreno, J.-M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue. Elsewhere in this volume.Google Scholar
  8. 8.
    Forrest, A., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. Proc. 1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press (1994).Google Scholar
  9. 9.
    Gordon, T.G.W., Bentley, P.J.: Towards Development in Evolvable Hardware. Proc. 2002 NASA/DoD Conf. on Evolvable Hardware, IEEE Computer Society Press (2002), 241–250.Google Scholar
  10. 10.
    Lala, P.K.: Digital Circuit Testing and Testability. Academic Press (1997).Google Scholar
  11. 11.
    Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards Robust Integrated Circuits: The Embryonics Approach. Proc. of the IEEE 88:4 (2000), 516–541.Google Scholar
  12. 12.
    Negrini, R., Sami, M.G., Stefanelli, R.: Fault Tolerance through Reconfiguration in VLSI and WSI Arrays. The MIT Press, Cambridge, MA (1989).Google Scholar
  13. 13.
    Ortega, C., Tyrrell, A.: MUXTREE revisited: Embryonics as a Reconfiguration Strategy in Fault-Tolerant Processor Arrays. LNCS 1478, Springer-Verlag, Berlin (1998), 206–217.Google Scholar
  14. 14.
    Raven, P., Johnson, G.: Biology. McGraw-Hill (2001), 6th edition.Google Scholar
  15. 15.
    Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R., eds.: C. Elegans II. Cold Spring Harbor Laboratory Press (1997).Google Scholar
  16. 16.
    Roggen, D., Floreano, D., Mattiussi, C.: A Morphogenetic System as the Phylogenetic Mechanism of the POEtic Tissue. Elsewhere in this volume.Google Scholar
  17. 17.
    Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and Stauffer, A.: A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems. IEEE Transactions on Evolutionary Computation, 1:1 (1997) 83–97.CrossRefGoogle Scholar
  18. 18.
    Tempesti, G.: A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes. Ph.D. Thesis No. 1827 (1998), EPFL, Lausanne, Switzerland.Google Scholar
  19. 19.
    Tempesti, G., Roggen, D., Sanchez, E., Thoma, Y., Canham, R., Tyrrell, A., Moreno, J.-M.: A POEtic Architecture for Bio-Inspired Systems. Proc. 8th Int. Conf. on the Simulation and Synthesis of Living Systems (Artificial Life VIII), Sydney, Australia, December 2002.Google Scholar
  20. 20.
    Tyrrell, A.M., Sanchez, E., Floreano, F., Tempesti, G., Mange, D., Moreno, J.-M., Rosenberg, J., Villa, A.E.P.: POEtic Tissue: An Integrated Architecture for Bio-Inspired Hardware. Elsewhere in this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gianluca Tempesti
    • 1
  • Daniel Roggen
    • 1
  • Eduardo Sanchez
    • 1
  • Yann Thoma
    • 1
  • Richard Canham
    • 2
  • Andy M. Tyrrell
    • 2
  1. 1.Swiss Federal Institute of Technology in LausanneSwitzerland
  2. 2.University of YorkEngland

Personalised recommendations