Wadge Degrees of ω-Languages of Deterministic Turing Machines

  • Victor Selivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2607)


We describe Wadge degrees of ù-languages recognizable by deterministic Turing machines. In particular, it is shown that the ordinal corresponding to these degrees is ξω where ξ = ωCK 1is the first non-recursive ordinal known as the Church-Kleene ordinal. This answers a question raised in [Du0?].


Wadge degree hierarchy reducibility ω-language Cantor space set-theoretic operation. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [An01]
    A. Andretta. Notes on Descriptive Set Theory. Manuscript, 2001.Google Scholar
  2. [Du0?]
    J. Duparc. A hierarchy of deterministic context-free ω-languages. Theor. Comp. Sci., to appear.Google Scholar
  3. [Er68a]
    Yu. L. Ershov, On a hierarchy of sets II, Algebra and Logic, 7, No 4 (1968), 15–47 (Russian).zbMATHCrossRefGoogle Scholar
  4. [KSW86]
    J. Köbler, U. Shöning and K.W. Wagner. The difference and truth-table hierarchies for NP. Dep. of Informatics, Koblenz. Preprint 7 (1986).Google Scholar
  5. [KM67]
    K. Kuratowski and A. Mostowski. Set Theory. North Holland, Amsterdam, 1967.Google Scholar
  6. [Lo83]
    A. Louveau. Some results in the Wadge hierarchy of Borel sets, Lecture Notes in Math., 1019 (1983), 28–55.MathSciNetGoogle Scholar
  7. [Mos80]
    Y.N. Moschovakis. Descriptive set theory, North Holland, Amsterdam, 1980.Google Scholar
  8. [Ro67]
    H. Rogers jr. Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967.Google Scholar
  9. [Se83]
    V.L. Selivanov. Hierarchies of hyperarithmetical sets and functions. Algebra i Logika, 22, No 6 (1983), 666–692 (English translation: Algebra and Logic, 22 (1983), 473–491).zbMATHMathSciNetGoogle Scholar
  10. [Se92]
    V.L. Selivanov. Hierarchies, Numerations, Index Sets. Handritten notes, 1992, 300 pp.Google Scholar
  11. [Se94]
    V.L. Selivanov. Fine hierarchy of regular ω-languages. Preprint N 14, 1994, the University of Heidelberg, Chair of Mathematical Logic, 13 pp.Google Scholar
  12. [Se95]
    V.L. Selivanov. Fine hierarchy of regular ω-languages. Lecture Notes in Comp. Sci., v. 915. Berlin: Springer, 1995, 277–287.Google Scholar
  13. [Se95a]
    V.L. Selivanov. Fine hierarchies and Boolean terms. J. Symbol. Logic, 60 (1995), 289–317.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Se98]
    V.L. Selivanov. Fine hierarchy of regular ω-languages. Theor. Comp. Sci. 191 (1998), 37–59.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Sta97]
    L. Staiger. ω-languages. In: Handbook of Formal Languages v. 3, Springer, Berlin, 1997, 339–387.MathSciNetGoogle Scholar
  16. [Ste80]
    J. Steel. Determinateness and the separation property. J. Symbol. Logic, 45 (1980), 143–146.Google Scholar
  17. [Wad72]
    W. Wadge. Degrees of complexity of subsets of the Baire space. Notices A.M.S. (1972), R–714.Google Scholar
  18. [Wad84]
    W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University of California, Berkeley, 1984.Google Scholar
  19. [Wag79]
    K. Wagner. On ω-regular sets. Inform. and Control, 43 (1979), 123–177.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [VW76]
    Van Wesep. Wadge degrees and descriptive set theory. Lecture Notes in Math., 689 (1978), 151–170.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Victor Selivanov
    • 1
    • 2
  1. 1.Chair of Informatics and Discrete MathematicsNovosibirsk Pedagogical UniversityGermany
  2. 2.Theoretische InformatikUniversität Siegen

Personalised recommendations