Solid-State Mid-Infrared Laser Sources pp 262-358

Part of the Topics in Applied Physics book series (TAP, volume 89)

Crystalline Mid-Infrared Lasers

  • Irina T. Sorokina
Chapter

Abstract

A survey of the well-established as well as newly emerging ion-doped crystalline lasers, operating in the mid-IR spectral range between 2 and 5 µm, is presented. The review includes rare-earth- and transition-metal-based ionic crystals, as well as color-center lasers. The emphasis is made on state-of-the-art compact all-solid-state room-temperature tunable sources, belonging to the broad class of vibronic lasers. The announcement of the efficient high-power room-temperature operation and super-broad tunability, as well as the possibility of generating ultrashort pulses from the novel class of chromium doped chalcogenide lasers led to a strong revival of research interest in vibronic laser systems, involving 3dn transition-metal ions. The review outlines the underlying physics of mid-IR lasers and sorts out the essential spectroscopic and laser characteristics, allowing assessment of the suitability of laser materials to serve as active media in diode-pumped laser systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Byer: Diode laser-pumped solid-state lasers, Science 239, 742 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    T. Y. Fan, R. L. Byer: Diode laser-pumped solid-state lasers, IEEE J. Quantum Electron. 24, 895 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    A. L. Schawlow, C. H. Townes: Infrared and optical masers, Phys. Rev. 112, 1940–1949 (1958)ADSCrossRefGoogle Scholar
  4. 4.
    T. H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)ADSCrossRefGoogle Scholar
  5. 5.
    T.H. Maiman, R. H. Hoskins, I. H. D’Haenens, C.K. Asawa, V. Evtukhov: Spectroscopy and stimulated emission in ruby, Phys. Rev. 123, 1151 (1960)ADSCrossRefGoogle Scholar
  6. 6.
    P. P. Sorokin, M. J. Stevenson: Stimulated infrared emission from trivalent uranium, Phys. Rev. Lett. 5, 557–559 (1960)ADSCrossRefGoogle Scholar
  7. 7.
    Z. J. Kiss, R. C. Duncan: Pulsed and continuous optical maser action in CaF2:Dy2+, Proc. IRE (Corresp.) 50, 1531–1532 (1962)Google Scholar
  8. 8.
    A. Yariv: Continuous operation of a CaF2:Dy2+ optical maser, Proc. IRE (Corresp.) 50, 1699 (1962)Google Scholar
  9. 9.
    Z. J. Kiss, H. R. Lewis, R. C. Duncan: Sun-pumped continuous optical maser, Appl. Phys. Lett. 2, 93–94 (1963)ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Kaminskii, L. S. Kornienko, A. M. Prokhorov: Continuous solar laser using Dy2+in CaF2, Dokl. Akad. Nauk SSSR 161, 1063–1064 (1965) [English transl. Sov. Phys. Dokl. 10, 334–335 (1965)]Google Scholar
  11. 11.
    L. F. Johnson, R. E. Dietz, H. J. Guggenheim: Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons, Phys. Rev. Lett. 11, 318–320 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    L.F. Johnson, R. E. Dietz, H. J. Guggenheim: Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2, Appl. Phys. Lett. 5, 21–22 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    L.F. Johnson, H. J. Guggenheim, R.A. Thomas: Phonon terminated optical masers, Phys. Rev. 149, 179–185 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    L.F. Johnson, H. J. Guggenheim, D.H. Bahnck: Phonon terminated laser emission from Ni2+ ions in KMgF3, Opt. Lett. 8, 371–373 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    P. F. Moulton, A. Mooradian: Broadly tunable CW operation of Ni:MgF2 and Co:MgF2 lasers, Appl. Phys. Lett. 35, 838–840 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    P. F. Moulton, A. Mooradian, T.B. Reed: Efficient CW optically pumped Ni:MgF2 laser, Opt. Lett. 3, 164–166 (1978)ADSGoogle Scholar
  17. 17.
    D. Welford, P. F. Moulton: Room-temperature operation of a Co:MgF2 laser, Opt. Lett. 13, 975–977 (1988)ADSGoogle Scholar
  18. 18.
    W. Gellermann: Color center lasers, J. Phys. Chem. Solids 52, 249–297 (1991)CrossRefADSGoogle Scholar
  19. 19.
    L.F. Mollenauer, R.H. Stolen: The soliton laser, Opt. Lett. 9, 14 (1984)ADSGoogle Scholar
  20. 20.
    S. B. Mirov, T. Basiev: Progress in color-center lasers, IEEE J. Sel. Top. Quantum Electron. 1, 22–30 (1995)CrossRefGoogle Scholar
  21. 21.
    L.F. Johnson, G. D. Boyd, K. Nassau: Optical maser characteristics of Ho3+ in CaWO4, Proc. IRE 50, 87 (1962)CrossRefGoogle Scholar
  22. 22.
    L.F. Johnson, G.D. Boyd, K. Nassau: Optical maser characteristics of Tm3+ in CaWO4, Proc. IRE 50, 86 (1962)CrossRefGoogle Scholar
  23. 23.
    L. F. Johnson: Optical maser characteristics of rare-earth ions in crystals, J. Appl. Phys. 34, 897–909 (1963)ADSCrossRefGoogle Scholar
  24. 24.
    Z. J. Kiss, R. C. Duncan: Optical maser action in CaWO4:Er3+, Proc. IRE 50, 1531 (1962)Google Scholar
  25. 25.
    Yu. K. Voron’ko, A.A. Kaminskii, V. V. Osiko, A.M. Prokhorov: A new type of crystal for optically pumped lasers, Izv. Akad. Nauk SSSR, Neorg. Mater. 2, 1161–1170 (1966) [English transl. Inorg. Mater. (USSR) 991–998 (1966)]Google Scholar
  26. 26.
    E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G.B. Loutts, E.W. Zharikov, A.I. Shcherbakov: Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets, J. Opt. Soc. Am. B 10, 1436–1442 (1993)ADSGoogle Scholar
  27. 27.
    D. E. McCumber: Theory of phonon-terminated optical masers, Phys. Rev. 134, A299–A306 (1964)ADSCrossRefGoogle Scholar
  28. 28.
    D.E. McCumber: Einstein relations connecting broadband emission and absorption spectra, Phys. Rev. 136, A954–A957 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Kaminskii: Laser Crystals (Springer, 1990) p. 456Google Scholar
  30. 30.
    W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1999) p. 746MATHGoogle Scholar
  31. 31.
    L.F. Johnson, H. J. Guggenheim: Infrared-pumped visible laser, Appl. Phys. Lett. 19, 44–47 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    A. A. Mak, B. M. Antipenko: Rare-earth converters of neodymium laser radiation Zh. Prikl. Spektrosk. 37, 1029 (1982) [English transl. J. Appl. Spectr. 37, 1458–71 (1982)]ADSGoogle Scholar
  33. 33.
    B.M. Antipenko, A.A. Mak, B.V. Sinizyn, O.B. Raba, T.V. Uvarova: New excitation schemes for laser transitions, Zh. Tekh. Phys. 52, 1982; p. 521–522 (1982) [English transl. Sov. Phys.-Tech. Phys. 27, 333–334 (1982)]Google Scholar
  34. 34.
    B. M. Antipenko: Cross-relaxation schemes for pumping laser transitions, Zh. Tekh. Phys. 54, 385–388 (1984) [English transl. Sov. Phys.-Tech. Phys. 29, 228–230 (1984)]Google Scholar
  35. 35.
    A. A. Kaminskii: Spectroscopic study of stimulated radiation of Er3+ activated CaF2-YF3 crystals, Optika-i-Spektroskopiya 31, 938–943 (1971) [English transl. Opt. Spectrosc. 31, 507–510 (1971)]Google Scholar
  36. 36.
    L.F. Johnson, L. G. Van Uitert, J. J. Rubin, R. A. Thomas: Energy transfer from Er3+ to Tm3+ and Ho3+ ions in crystals, Phys. Rev. 133, A494–A498 (1964)ADSCrossRefGoogle Scholar
  37. 37.
    B. Henderson, R. H. Bartram: Crystal-Field Engineering of Solid-State Laser Materials (Cambridge Univ. Press, Cambridge 2000) p. 398Google Scholar
  38. 38.
    P. F. Moulton: Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B 3, 125–133 (1986)ADSGoogle Scholar
  39. 39.
    J. R. C. Stoneman, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486–488 (1990)ADSGoogle Scholar
  40. 40.
    J. F. Pinto, L. Esterowitz, G.H. Rosenblatt: Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm, Opt. Lett. 19, 883–885 (1994)ADSGoogle Scholar
  41. 41.
    G. Huber, E. W. Duczynski, K. Petermann: Laser pumping of Ho-, Tm-, Erdoped garnet lasers at room temperature, IEEE J. Quantum Electron. 24, 920–923 (1988)ADSCrossRefGoogle Scholar
  42. 42.
    T.Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich: Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron. 24, 924–933 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    K. L. Vodop’yanov, L. A. Kulevskii, P. P. Pashinin, A. F. Umyskov, I.A. Shcherbakov: Bandwidth-limited picosecond pulses from a YSGG:Cr3+:Er3+ laser (λ = 2.79 µm) with active mode locking, Kvant.-Elektron. 14, 1219–1224 (1987) [English transl. Sov. J. Quantum Electron. 17, 776–779 (1987)]Google Scholar
  44. 44.
    E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I. A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, in W. R. Bosenberg, M.M. Fejer (Eds.), OSA Trends Opt. Photonics 19, 197–200 (Opt. Soc. Am., Washington, DC 1998)Google Scholar
  45. 45.
    R.H. Page, L.D. DeLoach, G.D. Wilke, S.A. Payne, R. J. Beach, W.F. Krupke: Cr2+-doped II-VI crystals: new widely tunable, room-temperature mid-IR lasers, Lasers and Electro-Optics Society Annual Meeting, 1995, 8th Annual Meeting Conference Proceedings, Vol. 1, IEEE 449–450 (1995)CrossRefGoogle Scholar
  46. 46.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.P. Krupke: Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron. 32, 885–895 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    R.H. Page, K.I. Schaffers, L.D. DeLoach, G.D. Wilke, F.D. Patel, J.B. Tassano, S.A. Payne, W.F. Krupke, K.-T. Chen, A. Burger: Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers, IEEE J. Quantum Electron. 33, 609–619 (1997)CrossRefADSGoogle Scholar
  48. 48.
    G.J. Wagner, T. J. Carrig, R.H. Page, K.I. Schaffers, J. Ndap, X. Ma, A. Burger: Continuous-wave broadly tunable Cr2+:ZnSe laser, Opt. Lett. 24, 19–21 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    S. Kück: Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers, Appl. Phys. B. 72, 515–562 (2001)ADSGoogle Scholar
  50. 50.
    B. F. Aull, H. P. Jenssen: Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. I. A phenomenological crystal-field model, Phys. Rev. B 34, 6640–6646 (1986)ADSCrossRefGoogle Scholar
  51. 51.
    B. F. Aull, H. P. Jenssen: Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quantum Electron. 18, 925–930 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    E.V. Zharikov, A.I. Zagumennyi, G.B. Lutts, V.A. Smirnov, I.T. Sorokina, I.A. Shcherbakov: New laser crystals —solid solutions based on scandium-containing aluminum-gallium garnets, doped with chromium and neodymium, Laser Phys. 1, 216–219 (1991)Google Scholar
  53. 53.
    M. J. Weber: Handbook of Lasers (CRC, Boca Raton, FL 2000) p. 1198Google Scholar
  54. 54.
    S. Hufner: Optical Spectra of Transparent Rare-Earth Compounds (Academic Press, New York 1978)Google Scholar
  55. 55.
    B. Henderson, G. F. Imbusch: Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford 1989)Google Scholar
  56. 56.
    G.H. Dieke: Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley-Interscience, New York 1968)Google Scholar
  57. 57.
    B.R. Judd: Optical absorption intensities of rare-earth ions, Phys. Rev. 127, 750–761 (1962)ADSCrossRefGoogle Scholar
  58. 58.
    B. G. Wybourne: Spectroscopic Properties of Rare-Earths (Wiley-Interscience, New York 1965)Google Scholar
  59. 59.
    G.D. Boyd, R.J. Collins, S. P.S. Porto, A. Yariv, W.A. Hargreaves: Excitation, relaxation and continuous maser action in the 2.613-micron transition of CaF2:U3+, Phys. Rev. Lett. 8, 269–272 (1962)ADSCrossRefGoogle Scholar
  60. 60.
    S. P. S. Porto, A. Yariv: Optical maser characteristics of BaF2:U3+, Proc. IRE 50, 1542–1543 (1962)Google Scholar
  61. 61.
    S.P. S. Porto, A. Yariv: Excitation, relaxation and optical maser action at 2.407 micron in SrF2:U3+, Proc. IRE 50, 1543–1544 (1962)Google Scholar
  62. 62.
    D. Meichenin, F. Auzel, S. Hubert, E. Simoni, M. Louis, J.Y. Gesland: New room-temperature CW laser at 2.82 µm U3+/LiYF4, Electron. Lett. 30, 1309 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    H. P. Jenssen, M. A. Noginov, A. Cassanho: U:YLF, a prospective 2.8 µm laser crystal, OSA Proc. Adv. Solid-State Lasers 15, 463–467 (Opt. Soc. Am., Washington, DC 1993)Google Scholar
  64. 64.
    G. Menzer: Die Kristallstruktur von Granat, Centralbl. Min. A, 344–345 (1925); Z. Kristallogr. 63, 157–158 (1926) (in German)Google Scholar
  65. 65.
    G. Menzer: Die Kristallstruktur der Granate, Z. Kristallogr. 69, 300–396 (1928) (in German)Google Scholar
  66. 66.
    S. Geller: Crystal chemistry of the garnets, Z. Kristallogr. 125, 1–47 (1967)CrossRefGoogle Scholar
  67. 67.
    S. C. Abrahams, S. Geller: Refinement of the structure of a grossularite garnet, Acta Crystallogr. 11, 437–441 (1958)CrossRefGoogle Scholar
  68. 68.
    W. Nie, Y. Kalisky, C. Pedrini, A. Monteil, G. Boulon: Energy transfer from Cr3+ multisites to Tm3+ multisites in yttrium aluminum garnet, Opt. Quantum Electron. 22, 123–131Google Scholar
  69. 69.
    Y. Kalisky, S. R. Rotman, A. Brenier, C. Pedrini, G. Boulon, F. X. Hartman: Spectroscopic properties, multisite dynamics, and operation of pulsed Ho laser, OSA Proc. Adv. Solid-State Lasers 13, 144–147 (Opt. Soc. Am., Washington, DC 1992)Google Scholar
  70. 70.
    V. Lupei: RE3+ emission in garnets: multisites, energy transfer and quantum efficiency, Opt. Mater. 19, 95–107 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    H. Bethe: Thermaufspaltung in Kristallen, Ann. Phys. (Leipzig) 3, 133–208 (1929)ADSGoogle Scholar
  72. 72.
    J. H. Van Vleck: The puzzle of rare-earth spectra in solids, J. Phys. Chem. 41, 67–80 (1937)CrossRefGoogle Scholar
  73. 73.
    J. H. Van Vleck, A. Sherman: The quantum theory of valence, Rev. Mod. Phys. 7, 167–228 (1935)MATHADSCrossRefGoogle Scholar
  74. 74.
    C. J. Ballhausen: Introduction to Ligand Field Theory (McGraw-Hill, New York 1962)MATHGoogle Scholar
  75. 75.
    P. Schuster: Ligandenfeldtheorie (Verlag Chemie, Weinheim 1973)Google Scholar
  76. 76.
    Y. Tanabe, S. Sugano: On the absorption spectra of complex ions, Part I, J. Phys. Soc. Jap. 9, 753–766 (1954); Part II, J. Phys. Soc. Jap. 9, 766–779 (1954)ADSGoogle Scholar
  77. 77.
    S. Sugano, Y. Tanabe, H. Kamimura: Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York 1970)Google Scholar
  78. 78.
    H. A. Jahn, E. Teller: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. R. Soc. London A 161, 220–235 (1937)MATHADSGoogle Scholar
  79. 79.
    R. Engleman: The Jahn-Teller Effect in Molecules and Crystals (Wiley-Interscience, New York 1972)Google Scholar
  80. 80.
    I. B. Bersuker: The Jahn-Teller Effect and Vibronic Interactions in Quantum Chemistry (Plenum, New York 1984)Google Scholar
  81. 81.
    M. Kaminska, J.M. Baranovski, S.M. Uba, J. T. Vallin: Absorption and luminescence of Cr2+(d4) in II-VI compounds, J. Phys. C 12, 2197–2214 (1979)ADSCrossRefGoogle Scholar
  82. 82.
    J. T. Vallin, G. A. Slack, S. Roberts, A. E. Hughes: Infrared absorption in some II-VI compounds doped with Cr, Phys. Rev. B 2, 4313–4333 (1970)ADSCrossRefGoogle Scholar
  83. 83.
    S.W. Biernacki, Jahn-Teller coupling of Cr2+ ion in ZnS, ZnSe and ZnTe, Phys. Stat. Sol. (b) 87, 607–612 (1978)CrossRefADSGoogle Scholar
  84. 84.
    A. L. Natadze, A. I. Ryskin, Jahn-Teller coupling of Cr2+ ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment, Phys. Stat. Sol. (b) 97, 175–185 (1980)CrossRefADSGoogle Scholar
  85. 85.
    G. Goetz, H. Zimmermann, H. J. Schulz, Jahn-Teller interaction at Cr2+(d4) centres in tetrahedrally coordinateqd II-VI lattices studied by optical spectroscopy, Z. Physik B 91, 429–436 (1993)CrossRefADSGoogle Scholar
  86. 86.
    F. S. Ham: Dynamical Jahn-Teller effect in paramagnetic resonance spectra: Orbital reduction factors and partial quenching of spin-orbit interaction, Phys. Rev. 138, A1727 (1965)ADSCrossRefGoogle Scholar
  87. 87.
    F. S. Ham: Effect of linear Jahn-Teller coupling on paramagnetic resonance in a 2E state, Phys. Rev. 166, 307 (1968)ADSCrossRefGoogle Scholar
  88. 88.
    M. D. Sturge: in Advances in research and applications, Vol. 20, Solid State Physics, F. Seitz, D. Turnbull, H. Ehrenreich (Eds.): (Academic Press, New York 1967) p. 91Google Scholar
  89. 89.
    B. Nygren, J. T. Vallin, G. A. Slack: Direct observation of the Jahn-Teller splitting in ZnSe:Cr2+, Solid State Commun. 11, 35 (1972)CrossRefADSGoogle Scholar
  90. 90.
    O. Laporte: Die Struktur des Eisenspektrums, Z. Phys. 23, 135 (1924)ADSCrossRefGoogle Scholar
  91. 91.
    S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, W.F. Krupke: LiCaAlF6:Cr3+: A promising new solid-state laser material, IEEE J. Quantum Electron. 24, 2243–2252 (1988)ADSCrossRefGoogle Scholar
  92. 92.
    L. E. Orgel: An Introduction to Transition-Metal Chemistry Ligand-Field Theory (Methuen, London 1966)Google Scholar
  93. 93.
    A. Zunger, U. Lindefelt: Electronic structure of transition-atom impurities in semiconductors: Substitutional 3d impurities in silicon, Phys. Rev. B 27, 1191 (1983)ADSCrossRefGoogle Scholar
  94. 94.
    V. Singh, A. Zunger: Electronic structure of transition-atom impurities in GaP, Phys. Rev. B 31, 3729 (1985)ADSCrossRefGoogle Scholar
  95. 95.
    I. T. Sorokina, S. Naumov, E. Sorokin, A. G. Okhrimchuk: The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping, in Laser Optics 2000, V.I. Ustyugov (Ed.), Proc. SPIE 4350, 99–105 (2001)Google Scholar
  96. 96.
    I.T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, A.V. Shestakov: Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser, Opt. Lett. 24, 1578–1580 (1999)ADSCrossRefGoogle Scholar
  97. 97.
    E. Sorokin, I. T. Sorokina: Tunable diode-pumped continuous-wave Cr2+:ZnSe laser, Appl. Phys. Lett. 80, 3289–3291 (2002)ADSCrossRefGoogle Scholar
  98. 98.
    I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, K. Schaffers: Broadly tunable compact continuous-wave Cr2+:ZnS laser, Opt. Lett. 27, 140–142 (2002)CrossRefGoogle Scholar
  99. 99.
    H. V. Lauer, F. K. Fong: Coupling strength in the theory of radiationless transitions: f to f and d to f relaxation of rare earth ions in YAlO3 and Y3Al5O12, J. Chem. Phys. 60, 274–280 (1974)ADSCrossRefGoogle Scholar
  100. 100.
    W. H. Fonger, C.W. Struck: Unified model of energy transfer for arbitrary Franck-Condon offset and temperature, J. Lumin. 17, 241–261 (1978)CrossRefGoogle Scholar
  101. 101.
    M. Yamaga, Y. Gao, F. Rasheed, K.P. O’Donnel, B. Henderson, B. Cockayne: Radiative and non-radiative decays from the excited state of Ti3+ ions in oxide crystals, Appl. Phys. B 51, 329 (1990)ADSCrossRefGoogle Scholar
  102. 102.
    T. T. Basiev, A. Yu. Dergachev, E. O. Kirpichenkova, Yu. V. Orlovskii, V. V. Osiko: Direct measurement of the rate of nonradiative relaxation and luminescence spectra from the 4G7/2, 4G 5/2 + 2G7/2, and 4F9/2 levels of Nd 3+ ions in LaF3, SrF2, and YAlO3 laser crystals, Sov. J. Quantum Electron. 17, 1289–1291 (1987)CrossRefADSGoogle Scholar
  103. 103.
    Yu. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, K.K. Pukhov: Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model, Phys. Rev. B 49, 3821–3830 (1994)ADSCrossRefGoogle Scholar
  104. 104.
    Yu. V. Orlovskii, K. K. Pukhov, T. T. Basiev, T. Tsuboi: Nonlinear mechanism of multiphonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions, Opt. Mat. 4, 583–595 (1995)CrossRefGoogle Scholar
  105. 105.
    T. T. Basiev, Yu. V. Orlovskii, K.K. Pukhov, V.B. Sigachev, M. E. Doroshenko, I. N. Vorob’ev: Multiphonon relaxation rate measurements and theoretical calculations in the frame of non-linear and non-Coulomb model of a rare-earth ion-ligand interaction, J. Lumin. 68, 241–253 (1996)CrossRefGoogle Scholar
  106. 106.
    T. T. Basiev, Yu. V. Orlovskii, K. K. Pukhov, F. Auzel: Multiphonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions, Laser Phys. 7, 1139–1152 (1997)Google Scholar
  107. 107.
    Yu. V. Orlovskii, T. T. Basiev, I. N. Vorob’ev, E. O. Orlovskaya, N. P. Barnes, S.B. Mirov: Temperature dependencies of excited state lifetimes and relaxation rates of 3-5 phonon (4-6 µm) transitions in the YAG, LuAG and YLF crystals doped with trivalent holmium, thulium, and erbium, Opt. Mater. 18, 355–365 (2002)ADSCrossRefGoogle Scholar
  108. 108.
    T. T. Basiev, Yu. V. Orlovskii, B. I. Galagan, M. E. Doroshenko, I. N. Vorob’ev, L. N. Dmitruk, A. G. Papashvili, V. N. Skvortsov, V. A. Konyushkin, K.K. Pukhov, G. A. Ermakov, V.V. Osiko, A.M. Prokhorov, S. Smith: Evaluation of rare-earth doped crystals and glasses for 4-5-µm lasing, Laser Phys. 12, 859–877 (2002)Google Scholar
  109. 109.
    F. Pelle, F. Auzel: Phonon bottleneck effect in multiphonon non-radiative transitions of rare-earth ions, J. Lumin. 76-77, 623–627 (1998)CrossRefGoogle Scholar
  110. 110.
    F. Pelle, N. Gardant, F. Auzel: Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions, J. Opt. Soc. Am. B 15, 667–679 (1998)ADSCrossRefGoogle Scholar
  111. 111.
    F. Pelle, N. Gardant, F. Auzel: Saturation effect on multiphonon relaxation rates, J. Alloys Compounds 275/277, 430 (1998)CrossRefGoogle Scholar
  112. 112.
    A. Einstein: Zur Quantentheorie der Strahlung, Phys. Z. 18, 121–128 (1917)Google Scholar
  113. 113.
    O. Svelto: Principles of Lasers (Plenum, New York 1998)Google Scholar
  114. 114.
    A.E. Siegman: Lasers (Cambridge Univ. Press, Cambridge 1986)Google Scholar
  115. 115.
    J. Koetke, G. Huber: Infrared excited-state absorption and stimulatedemission cross sections of Er3+-doped crystals, Appl. Phys. B 61, 151 (1995)ADSCrossRefGoogle Scholar
  116. 116.
    I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen: In situ measurement of ESA, upconversion, and thermal quenching in Cr:LiSAF and Cr:LiSGaF lasers, in OSA Trends Opt. Photonics 10, 411–414, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)Google Scholar
  117. 117.
    S. Naoumov, I. T. Sorokina, E. Sorokin: Measurement of the excited state absorption cross-section in Cr4+:YAG using relaxation oscillation study, paper CtuK38, Conference on Lasers and Electro-Optics Europe, Nice, France; in CLEO Europe’2000 Tech. Digest (2000) p. 105Google Scholar
  118. 118.
    V.V. Ovsyankin, P.P. Feofilov: On the mechanism of adding of electronic excitations in doped crystals, Sov. Phys. JETP Lett. 3, 322–323 (1966)ADSGoogle Scholar
  119. 119.
    V.V. Ovsyankin, P.P. Feofilov: Cooperative sensitization of luminescence in crystals activated with rare earth ions, Sov. Phys. JETP Lett. 4, 317–318 (1966)ADSGoogle Scholar
  120. 120.
    F. Auzel: Compteur quantique par transfert d’energie entre deux ions de terres reres dans un tungstate mixte et dans un verre, C. R. Acad. Sci. Paris B 262, 1016–1019 (1966)Google Scholar
  121. 121.
    F. Auzel: Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate, C. R. Acad. Sci. Paris B 263, 819–821 (1966)Google Scholar
  122. 122.
    V.V. Ovsyankin, P.P. Feofilov: Cooperative processes in luminescent systems (in Russian), Izv. Akad. Nauk, Ser. Fiz. 37, 262–272 (1973) [English transl. Bulletin Acad. Sci. USSR, Phys. Ser.]Google Scholar
  123. 123.
    D.L. Dexter: Possibility of luminescence quantum yields greater than unity, Phys. Rev. 108, 630–633 (1957)ADSCrossRefGoogle Scholar
  124. 124.
    N. Bloembergen: Solid-state infrared quantum counter, Phys. Rev. Lett. 2, 84–85 (1959)ADSCrossRefGoogle Scholar
  125. 125.
    John F. Porter, Jr.: Fluorescence excitation by the absorption of two consecutive photons, Phys. Rev. Lett. 7, 414–415 (1961)ADSCrossRefGoogle Scholar
  126. 126.
    J. S. Chivian, W.E. Case, D.D. Eden: The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters, Appl. Phys. Lett. 35, 124–125 (1979)ADSCrossRefGoogle Scholar
  127. 127.
    V. A. Benderskiy, V. Kh. Brikensteyn, M. A. Kozhushner, I. A. Kuznetsova, P. G. Filippov: Nonlinear fluorescence quenching of high density localized electron excitations in molecular crystals, Sov. Phys. JETP 43, 268 (1976)ADSGoogle Scholar
  128. 128.
    M. A. Noginov, H. P. Jenssen, A. Cassanho: Upconversion in Cr:LiSGaF and Cr:LiSAF, OSA Proc. Adv. Solid-State Lasers 15, 376–380, A. A. Pinto: Tso Ye Fan (Eds.) (Opt. Soc. Am., Washington, DC 1993)Google Scholar
  129. 129.
    V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, M. A. Noginov: in Concentration Quenching and Upconversion of Neodymium Ions in LaSc3(BO3)4 and GdVO4 Crystals, OSA Proc. Adv. Solid-State Lasers 24, 509–513, B.H.T. Chai, S.A. Payne (Eds.) (Opt. Soc. Am., Washington, DC 1995)Google Scholar
  130. 130.
    D.A. Zubenko, M.A. Noginov, V.A. Smirnov, I.A. Scherbakov: Different mechanisms of nonlinear quenching of luminescence, Phys. Rev. B 55, 8881–8886 (1997)ADSCrossRefGoogle Scholar
  131. 131.
    B.M. Antipenko, B.A. Buchenkov, A. S. Glebov, T.I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi: Spectroscopy of YAG:CrTmHo laser crystals, Opt. Spectrosc. 64, 772–774 (1988)ADSGoogle Scholar
  132. 132.
    B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V.A. Pismennyi: Interpretation of the temperature dependence of the YAG:Cr+Tm+Ho lasing threshold, Opt. Spectrosc. 63, 230–232 (1988)ADSGoogle Scholar
  133. 133.
    Kh. S. Bagdasarov, V.I. Zhekov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov: Steady-state emission from a Y3Al5O12:Er3+ laser (λ = 2.94µ, T = 300K), Sov. J. Quantum Electron. 13, 262–263 (1983)CrossRefADSGoogle Scholar
  134. 134.
    M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov: Non-linear population processes of Er3+ laser levels in chromium-doped garnet crystals, Opt. Quantum Electron. 22, S61–S74 (1990)CrossRefGoogle Scholar
  135. 135.
    S.A. Pollack, D.B. Chang, N.L. Moise: Continuous wave and Q-switched infrared erbium laser, Appl. Phys. Lett. 49, 1578–1580 (1986)ADSCrossRefGoogle Scholar
  136. 136.
    D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov: Interaction of excited holmium and thulium ions in yttrium scandium garnet crystals, J. Appl. Spectrosc. 52, 391–394 (1990)ADSCrossRefGoogle Scholar
  137. 137.
    D.A. Zubenko, M.A. Noginov, S.G. Semenkov, V.A. Smirnov, I.A. Shcherbakov: Interionic interactions in YSGG:Cr:Tm and YSGG:Cr:Tm:Ho laser crystals, Sov. J. Quantum Electron. 22, 133–138 (1992)CrossRefADSGoogle Scholar
  138. 138.
    D. A. Zubenko, M. A. Noginov, V. G. Ostroumov, V. A. Smirnov, I. A. Shcherbakov: Interaction of excited Cr3+ ions in laser crystals, J. Appl. Spectrosc. 56, 56–59 (1992)ADSCrossRefGoogle Scholar
  139. 139.
    P. P. Feofilov: in Physics of Impurity Centers in Crystals T. S. Zavt (Ed.) (Academy of Sciences of the Estonian SSR, Tallin 1972), p. 539Google Scholar
  140. 140.
    W. Lenth, R. M. Macfarlane: Upconversion lasers, Opt. Photonics News, 8–15 (March 1992)Google Scholar
  141. 141.
    B. DiBartolo (Ed.): Optical Properties of Ions in Solids (Plenum, New York 1975)Google Scholar
  142. 142.
    M. D. Agranovich, M. D. Galanin: Electron Excitation Energy Transfer in Condensed Media, (Nauka, Moscow 1978) p. 383Google Scholar
  143. 143.
    B. DiBartolo (Ed.): Energy Transfer Processes in Condensed Matter (Plenum, New York 1983)Google Scholar
  144. 144.
    A.A. Kaplyanski, R.M. MacFarlane (Eds.): Spectroscopy of Rare-Earth Ions in Crystals (North-Holland, Amsterdam 1987)Google Scholar
  145. 145.
    A. I. Burstein: Concentration quenching of noncoherent excitations in solids, Sov. Phys. Usp. 27, 579–606 (1984)CrossRefADSGoogle Scholar
  146. 146.
    T. Förster: Zwischenmolekulare Energiewanderung und Fluoreszenz, An. Phys. 2, 55–77 (1948)MATHCrossRefGoogle Scholar
  147. 147.
    Th. Förster: Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie, Z. Naturforsch. 4, 321–327 (1949)ADSGoogle Scholar
  148. 148.
    H. Kallman, F. London: Über quantenmechanische Energieübertragung zwischen atomaren Systemen, Z. Phys. Chem. 2, 207–243 (1929)Google Scholar
  149. 149.
    D. L. Dexter: A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 835–850 (1953)ADSCrossRefGoogle Scholar
  150. 150.
    M. Inokuti, F. Hirayama: Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys. 43, 1978–1989 (1965)ADSCrossRefGoogle Scholar
  151. 151.
    M. D. Galanin: Resonant energy transfer of excitation in solutions, Trudy FIAN 12, 3–35 (1960) (in Russian)Google Scholar
  152. 152.
    A. S. Agabekyan: Energy transfer in strong incoherent interactions, J. App. Spectrosc. 34, 465–468 (1981)CrossRefGoogle Scholar
  153. 153.
    A. I. Burstein: Hopping mechanism of energy transfer, Soviet Phys. JETP 35, 882–885 (1972)ADSGoogle Scholar
  154. 154.
    A. Brenier, J. Rubin, R. Moncorge, C. Pedrini: Excited-state dynamics of the Tm3+ ions and Tm3+ to Ho3+ energy transfers in LiYF4, J. Phys. (Paris) 50, 1463–1482 (1989)Google Scholar
  155. 155.
    V. K. S. Shante, S. Kirkpatrick: An introduction to percolation theory, Adv. Phys. 20, 325–357 (1971)ADSCrossRefGoogle Scholar
  156. 156.
    E. A. Milne: The diffusion of imprisoned radiation through a gas, J. London Math. Soc. 1, 40 (1926)CrossRefGoogle Scholar
  157. 157.
    A.C.G. Mitchell, M.W. Zemansky: Resonance Radiation and Excited Atoms (Cambridge Univ. Press, Cambridge 1961)MATHGoogle Scholar
  158. 158.
    F. Varsanyi, D. l. Wood, A. L. Schawlow: Self-absorption and trapping of sharp-line resonance radiation in ruby, Phys. Rev. Lett. 3, 544–545 (1959)ADSCrossRefGoogle Scholar
  159. 159.
    T. T. Basiev, Yu. K. Voron’ko, V.V. Osiko, A.M. Prokhorov, I.A. Shcherbakov: Experimental observation of ‘excitation trapping’ in a system of strongly interacting particles, Zhur. Eksp. Teoretich. Fiz. 39, 1042 (1974) [English transl. Sov. Phys. JETP]Google Scholar
  160. 160.
    P. Lacovara, H.K. Choi, C. A. Wang, R.L. Aggarwal, T.Y. Fan: Room-temperature diode-pumped Yb:YAG laser, Opt. Lett. 16, 1089 (1991)ADSGoogle Scholar
  161. 161.
    D. S. Sumida, T.Y. Fan: Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media, Opt. Lett. 19, 1343–1345 (1994)ADSCrossRefGoogle Scholar
  162. 162.
    S.A. Payne, one of the authors of the original publication [46], shared this viewGoogle Scholar
  163. 163.
    M. P. Hehlen: Reabsorption artifacts in measured excited-state lifetimes of solids, J. Opt. Soc. Am. B 14, 1312–1318 (1997)ADSCrossRefGoogle Scholar
  164. 164.
    M. A. Noginov: Reabsorption trapping of luminescence in laser crystals, enhancement of energy storage and upconversion, Appl. Opt. 36, 4153–4158 (1997)ADSCrossRefGoogle Scholar
  165. 165.
    I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Efficient broadly tunable continuous-wave Cr2+:ZnSe laser, J. Opt. Soc. Am. B 18, pp. 926–930 (2001)ADSCrossRefGoogle Scholar
  166. 166.
    J. A. Caird, S.A. Payne, P. R. Staver, A. J. Ramponi, L.L. Chase, W. F. Krupke: Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser, IEEE J. Quantum Electron. 24, 1077–1099 (1988)ADSCrossRefGoogle Scholar
  167. 167.
    D. Findlay, R. A. Clay: The measurement of internal losses in 4-level lasers, Phys. Lett. 20, 277 (1966)ADSCrossRefGoogle Scholar
  168. 168.
    V. A. Smirnov, I. A. Shcherbakov: Rare-earth scandium chromium garnets as active media for solid-state lasers, IEEE J. Quantum Electron. 24, 949–959 (1988)ADSCrossRefGoogle Scholar
  169. 169.
    I. A. Shcherbakov: Optically dense active media for solid-state lasers, IEEE J. Quantum Electron. 24, 979–984 (1988)ADSCrossRefGoogle Scholar
  170. 170.
    L. F. Johnson, H. J. Guggenheim: New laser lines in the visible from Er3+ ions in BaY2F8, Appl. Phys. Lett. 20, 474–477 (1972)ADSCrossRefGoogle Scholar
  171. 171.
    B.M. Antipenko: A cooperative mechanism of excitation of Ho3+ lasing ions in BaYb2F8, Soviet Tech. Phys. Lett. 6, 417–418 (1980) [transl. from: Pis’ma v Zhurnal Tekhnicheskoi Fiz. 6, 968–72 (1980)]Google Scholar
  172. 172.
    L. Esterowitz: Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 µm operating CW at room temperature, Opt. Engin. 29, 676–680 (1990)CrossRefADSGoogle Scholar
  173. 173.
    V.I. Zhekov, B.V. Zubov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov, A. F. Shevel: Mechanism of a population inversion between the 4I11/2 and 4I13/2 levels of the Er3+ion in Y3Al5O12 crystals, Soviet J. Quantum Electron. 10 (4), 428-30 (1980) [transl. from: Kvant. Elektron. 7(4), 749–53 (1980)]Google Scholar
  174. 174.
    V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov: Cooperative phenomena in yttrium erbium aluminium garnet crystals, Soviet J. Quantum Electron. 11(1), 128–130 (1984) [transl. from: Kvant. Elektron. 14(1), 189–92 (1984)]CrossRefADSGoogle Scholar
  175. 175.
    V.I. Zhekov, T.M. Murina, A.M. Prokhorov, M.I. Studenikin, S. Georgescu, V. Lupei, I. Ursu: Cooperative process in Y3Al5O12:Er3+ crystals, Soviet J. Quantum Electron. 16(2), 274–276 (1986) [transl. from: Kvant. Elektron 13(2), 419–422 (1986)]CrossRefADSGoogle Scholar
  176. 176.
    V.I. Zhekov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov: Spectrum of stimulated emission due to self-saturating transitions in high-concentration media, Soviet J. Quantum Electron. 11(2), 279–281 (1981); [transl. from: Kvant. Elektron. 8(2), 451–454 (1981)]CrossRefADSGoogle Scholar
  177. 177.
    M. A. Noginov, H. P. Jenssen: Reabsorption trapping: enhancement of energy storage and upconversion, in Digest IEEE Lasers Electro-Optics Society 1992 Annual Meeting (Institute Electrical Electronics Engineers, New York 1992), postdeadline paper PD9Google Scholar
  178. 178.
    E.V. Zharikov, N.N. Il’ichev, S.P. Kalitin, V.V. Laptev, A.A. Malyutin, V.V. Osiko, P.P. Pashinin, A.M. Prokhorov, Z. S. Saidov, V.A. Smirnov, A. F. Umyskov, I. A. Shcherbakov: Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium, Sov. J. Quantum Electron. 16(5), 635–639 (1986) [transl. from: Kvant. Elektron. 13(5), 973–979 (1986)]CrossRefADSGoogle Scholar
  179. 179.
    Yu. K. Voronrsko, S.B. Gessen, I.V. Gribkov, A. A. Kiryukhin, S.V. Lavrishev, D.I. Melikhov, V.V. Osiko, A.A. Sobolrs, V.M. Tatarintsev, S.N. Ushakov, L. I. Tsymbal: Laser utilizing erbium-activated gadolinium aluminum scandium garnet crystals coactivated with Cr3+ and emitting in the three-micron wavelength region, Sov. J. Quantum Electron. 19(9), 1147–1148 (1989) [transl. from: Kvant. Elektron. 16(9), 1785–1786 (1989)]CrossRefADSGoogle Scholar
  180. 180.
    A. A. Kaminskii, T. I. Butaeva, A. O. Ivanov, I. V. Mochalov, A. G. Petrosyan, G. I. Rogov, V. A. Fedorov: New data for stimulated radiation of crystals with Er3+ and Ho3+ ions, Pisrsma Zhur. Techn. Fiz. 2, 787–793 (1976) [English transl. in: Sov. Tech. Phys. Lett. 2, 308 (1976)]ADSGoogle Scholar
  181. 181.
    S. A. Pollack, D. B. Chang, N. L. Moise: Upconversion-pumped infrared erbium laser, J. Appl. Phys. 60, 4077–4086 (1986)ADSCrossRefGoogle Scholar
  182. 182.
    S.A. Pollack, D.B. Chang: Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals, J. Appl. Phys. 64, 2885–2893 (1988)ADSCrossRefGoogle Scholar
  183. 183.
    A.A. Kaminskii, B.P. Sobolev, S.E. Sarkisov, V.A. Fedorov, V.V. Ryabchenkov, T. V. Uvarova: A new self-activated crystal for producing three-micron stimulated emission, Inorg. Mater. (USSR) 17, 829–830 (1981) [Transl. from: Izv. Akad. Nauk SSSR, Neorganich. Mater. 17, 1121–1122 (1981)]Google Scholar
  184. 184.
    M. J. Weber: Handbook of Lasers (CRC Press, Boca Raton, FL 2000)Google Scholar
  185. 185.
    B. M. Antipenko, A. A. Mak, L. K. Sukhareva: Cross-relaxation BaEr2F8:Tm,Ho laser, Soviet Technical Physics Letters 10(5), 217–218 (1984) [transl. from: Pis’ma Zhur. Tekhnich. Fiz. 10, 513–517 (1984)]Google Scholar
  186. 186.
    L. F. Johnson, J. E. Geusic, L. G. Van Uitert: Coherent oscillations from Tm3+, Ho3+, Yb3+, Er3+ ions in YAG, Appl. Phys. Lett. 7, 127–128 (1965)ADSCrossRefGoogle Scholar
  187. 187.
    L. G. VanUitert, E. F. Dearborn, J. J. Rubin: J. Chem. Phys. 46, 3551 (1967)ADSCrossRefGoogle Scholar
  188. 188.
    B.M. Antipenko, A. S. Glebov, R.V. Dumbravyanu, B.P. Sobolev, T. V. Uvarova: Spectroscopy and lasing characteristics of BaEr2F8:Tm,Ho crystals, Sov. J. Quantum Electron. 17(4), 424–427 (1987) [transl. from: Kvant. Elektron. 14(4), 677–681 (1987)]CrossRefADSGoogle Scholar
  189. 189.
    B. M. Walsh, K. E. Muray, N. P. Barnes: Cr:Er:Tm:Ho:yttrium aluminum garnet laser exhibiting dual wavelength lasing at 2.1 and 2.9µm: Spectroscopy and laser performance, J. Appl. Phys. 91, 11–17 (2002)ADSCrossRefGoogle Scholar
  190. 190.
    B. M. Antipenko, A. S. Glebov, T. I. Kiseleva, V. A. Pismennyi: 2.12 µm HoYAG laser, Soviet Tech. Phys. Lett. 11(6), 284–285 (1985) [transl. from: Pis’ma Zhur. Tekhnich. Fiz. 11, 682-5 (1985)]Google Scholar
  191. 191.
    P. Albers, E. Stark, G. Huber: Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire, J. Opt. Soc. Am. B 3, 134–139 (1986)ADSGoogle Scholar
  192. 192.
    B. M. Antipenko, A. S. Glebov, T. I. Kiseleva, V. A. Pismennyi: A new spectro-scopic scheme of an active medium for the 2-µm band, Opt. Spectrosc. 60(1), 95–97 (1986) [transl. from: Optika I Spektroskopiya 60(1), 153–157 (1986)]ADSGoogle Scholar
  193. 193.
    E.W. Duczynski, G. Huber, V. G. Ostroumov, I.A. Shcherbakov: CW double cross pumping of the 5I75I8 laser transition in Ho3+-doped garnets, Appl. Phys. Lett. 48, 1562–1563 (1986)ADSCrossRefGoogle Scholar
  194. 194.
    B. M. Antipenko, A. S. Glebov, L. I. Krutova, V. M. Solntsev, L. K. Sukhareva: Active medium of lasers operating in the 2-smm spectral range and utilizing gadolinium scandium gallium garnet crystals, Sov. J. Quantum Electron. 16, 1986 [transl. from: Kvant. Elektron. 13, 1521–3 (1986)]Google Scholar
  195. 195.
    B. M. Antipenko, L. I. Krutova, L. K. Sukhareva: Cascade lasing of CSGG-Cr3+Tm3+Ho3+ crystals, Opt. Spectrosc. 61, 414–416 (1986) [transl. from: Optika I Spektroskopiya 61(3), 659–661 (1986)]ADSGoogle Scholar
  196. 196.
    I.T. Sorokina, A.F. Umyskov, V.A. Smirnov, I.A. Shcherbakov: The Tm-Tm and Tm-Ho energy transfer studies in YSGG and GSAG crystals at the resonant excitation of Tm and Ho ions, OSA Proc. Adv. Solid State Lasers 17, 159–161, T.Y. Fan, B.E. Chai (Eds.) (Opt. Soc. Am., Washington, DC 1994)Google Scholar
  197. 197.
    A.N. Alpat’ev, E.V. Zharikov, S.P. Kalitin, V.V. Laptev, V. G. Ostroumov, A.M. Prokhorov, Z. C. Saidov, V.A. Smirnov, I.T. Sorokina, A.F. Umyskov, I. A. Shcherbakov: The room-temperature laser action on 5I7 5I8 transition of holmium ions in yttrium-scandium-gallium garnet with chromium, thulium, and holmium ions (YSGG:Cr3+, Ho3+, Tm3+), Sov. J. Quant. Electron. 16, 1404 (1986)CrossRefADSGoogle Scholar
  198. 198.
    A.I. Feodorov, G.B. Loutts, M.A. Noginov, I.A. Shcherbakov, V. A. Smirnov, I. T. Sorokina, V. B. Tsvetkov, A. I. Zagumennyi, E.V. Zharikov, D.A. Zubenko: New promising low Sc3+ content garnet YSAG:Cr3+,Ho3+,Tm3+ for 2-µm lasers, OSA Proc. Adv. Solid State Lasers 13, 148–151, L.L. Chase, A.A. Pinto (Eds.) (Opt. Soc. Am., Washington, DC 1992)Google Scholar
  199. 199.
    E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I.A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, OSA Trends Opt. Photonics 19, 197–200, W.R. Bosenberg, M.M. Fejer (Eds.) (Opt. Soc. Am., Washington, DC 1998)Google Scholar
  200. 200.
    N.P. Barnes, E.D. Filer, F.L. Naranjo, W. J. Rodriguez, M.R. Kokta: Spectroscopy and lasing properties of Ho:Tm:LuAG, Opt. Lett. 18, 708–710 (1993)ADSCrossRefGoogle Scholar
  201. 201.
    H. Hemmati: 2.07 µm CW diode-laser-pumped Tm,Ho:YLiF4 room-temperature laser, Opt. Lett. 14, 435 (1989)ADSGoogle Scholar
  202. 202.
    S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke: The mechanism of Tm to Ho energy transfer in LiYF4, J. Phys. 4, 8525–8542 (1992)Google Scholar
  203. 203.
    M. A. Noginov, S. G. Semenkov, I. A. Shcherbakov, V. A. Smirnov: Energy transfer (Tm to Ho) and upconversion process in YSGG:Cr3+:Tm3+:Ho3+laser crystals, OSA Proc. Adv. Solid State Lasers 10, 178–82 (Opt. Soc. Am., Washington, DC 1991)Google Scholar
  204. 204.
    E. Wintner, F. Krausz, M.A. Noginov, V.A. Smirnov, I.T. Sorokina, C. Spielmann, I. A. Shcherbakov: Interaction of Ho3+ and Tm3+ ions in YSGG:Cr3+,Ho3+,Tm3+ at the strong selective excitation, Laser Phys. 2, 138 (1992)Google Scholar
  205. 205.
    R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta: Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers, Opt. Mater. 1, 111–124 (1992)CrossRefGoogle Scholar
  206. 206.
    B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V. A. Pisrsmennyi: Conversion of absorbed energy in YAG:Cr3+,Tm3+,Ho3+ crystals, Opt. Spectrosc. 64, 221–224 (1988) [transl. from: Opt. Spektrosk. 64, 373–377 (1988)]ADSGoogle Scholar
  207. 207.
    I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, M. Noginov: Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser, Opt. Lett. 21, 204–206 (1996)ADSCrossRefGoogle Scholar
  208. 208.
    A. G. Okhrimchuk, L.N. Butvina, E. M. Dianov, N.V. Lichkova, V.N. Zavgorodnev, E. Sorokin, I. T. Sorokina: Population dynamics of the 7F5 Level of Tb3+ ions doped in the KPb2Cl5, Int. Quantum Electron. Conf. (IQEC 2002) Moscow, (2002) paper QSuR24Google Scholar
  209. 209.
    S. I. Pekar: On the influence of the lattice deformations by electrons on the optical and electrical properties of crystals, Sov. Phys. Usp. 50, 197 (1953)Google Scholar
  210. 210.
    D. Spence, P. Kean, W. Sibbett: 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16, 41 (1991)ADSGoogle Scholar
  211. 211.
    M. Piche: Beam reshaping and self-mode-locking in nonlinear laser resonators, Opt. Commun. 86, 156–160 (1991)ADSCrossRefGoogle Scholar
  212. 212.
    Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz: Ultrabroadband femtosec-ond lasers, IEEE J. Quantum Electron. 30, 1100–1114 (1994)CrossRefADSGoogle Scholar
  213. 213.
    Y. Chen, F. X. Kärtner, U. Morgner, S.H. Cho, H.A. Haus, E.P. Ippen, J. G. Fujimoto: Dispersion-managed mode locking, J. Opt. Soc. Am. B 16, 1999–2004 (1999)ADSCrossRefGoogle Scholar
  214. 214.
    R. Mellish, N.P. Barry, S. C.W. Hyde, R. Jones, P. M.W. French, C. J. Van der Poel, A. Valster: Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier, Opt. Lett. 20, 2312–2314 (1995)ADSGoogle Scholar
  215. 215.
    V. P. Yanovsky, F.W. Wise, A. Cassanho, H. P. Jenssen: Femtosecond diode-pumped Cr:LiSGAF lasers, IEEE J. Quantum Electron. 2, 465 (1996)CrossRefGoogle Scholar
  216. 216.
    B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V.A. Pisrsmennyi: 2.12 µm Ho:YAG laser, Pisma Zh. Tech. Fiz. 11, 682 (1985) [English transl. in: Sov. Tech. Phys. Lett. 11, 284 (1985)]Google Scholar
  217. 217.
    R. J. Beach: Theory and optimization of lens ducts, Appl. Opt. 35, 2005–2015 (1996)ADSGoogle Scholar
  218. 218.
    R.J. Beach, M.A. Emanuel, B.L. Freitas, J.A. Skidmore, N.W. Carlson, J. Benett, R. W. Solarz: Applications of microlens-conditioned laser diode arrays, Proc. SPIE 2383, 283–297 (1995)ADSCrossRefGoogle Scholar
  219. 219.
    M. Tsunekane, N. Taguchi, H. Inaba: Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends, Appl. Opt. 38 (1999)Google Scholar
  220. 220.
    S.A. Payne, R. J. Beach, C. Bibeau, C.A. Ebbers, M.A. Emanuel, E. C. Honea, C.D. Marshall, R.H. Page, K.I. Schaffers, J.A. Skidmore, S.B. Sutton, W. F. Krupke: Diode arrays, crystals, and thermal management for solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997)CrossRefGoogle Scholar
  221. 221.
    A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state-lasers, Appl. Phys. B 58, 365 (1994)ADSGoogle Scholar
  222. 222.
    C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel: A 1-kW CW thin disc laser, IEEE J. Sel. Topics Quantum Electron. 6, 650–657 (2000)CrossRefGoogle Scholar
  223. 223.
    N. Berner, A. Diening, E. Heumann, G. Huber: Tm:YAG: a comparison between endpumped laser-rods and the “thin-disk”-setup, OSA Trends Opt. Photonics 26, 463–467 (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  224. 224.
    A. Dergachev, K. Wall, P.F. Moulton: A CW side-pumped Tm:YLF laser, OSA Trends Opt. Photonics 68, 343–350 (Opt. Soc. Am., Washington, DC 2002)Google Scholar
  225. 225.
    E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skidmore, M. A. Emanuel, S.A. Payne: 115-W Tm:YAG diode-pumped solid-state laser, IEEE J. Quantum Electron. 33, 1592–1600 (1997)CrossRefADSGoogle Scholar
  226. 226.
    B. Struve, G. Huber: Properties and medical applications of near-IR solid-state lasers, J. Phys. IV Colloque. 1, 3–6 (1991)Google Scholar
  227. 227.
    C. Li, J. Song, D. Shen, Y. Cao, N.S. Kim, K. Ueda: Flash-lamp-pumped acousto-optic Q-switched Cr-Tm:YAG Laser, Opt. Rev. 7, 58–61 (2000)CrossRefGoogle Scholar
  228. 228.
    F. J. Duarte: Tunable Lasers Handbook (Academic Press, San Diego 1995)Google Scholar
  229. 229.
    B. Lyot: Un monochromateur a grand champ utilizant les interferences en lumiére polarisée, Compt. Rend. 197, 1593 (1933)Google Scholar
  230. 230.
    J. W. Evans: The birefringent filter, J. Opt. Soc. Am. 39, 229–242 (1949)ADSGoogle Scholar
  231. 231.
    A. L. Bloom: Modes of a laser resonator containing tilted birefringent plates, J. Opt. Soc. Am. 64, 447–452 (1974)ADSCrossRefGoogle Scholar
  232. 232.
    D.J. Taylor, S.E. Harris, S.T.K. Nieh, T.W. Hänsch: Electronic tuning of a dye laser using the acousto-optic filter, Appl. Phys. Lett. 19, 269–271 (1971)ADSCrossRefGoogle Scholar
  233. 233.
    T. Yano, A. Watanabe: Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction, Appl. Opt. 15, 2250–2258 (1976)ADSGoogle Scholar
  234. 234.
    C. Chappuis, J. P. Goedgebuer: Broad band electro-optic tuning of a CW dye laser, Opt. Commun. 47, 12–17 (August, 1983)Google Scholar
  235. 235.
    V. G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook on Nonlinear Optical Crystals, Springer Ser. Opt. Sci. 64 (Springer, Berlin, Heidelberg 1999)Google Scholar
  236. 236.
    S. Lovold, P.F. Moulton, D.K. Killinger, N. Menyuk: Frequency tuning characteristics of a Q-switched Co:MgF2 laser, IEEE J. Quantum Electron. 21, 202–208 (1985)ADSCrossRefGoogle Scholar
  237. 237.
    M. Frenz, H. Pratisto, F. Konz, E.D. Jansen, A. J. Welch, H.P. Weber: Comparison of the effects of absorption coefficient and pulse duration of 2.12-µm and 2.79-µm radiation on laser ablation of tissue, IEEE J. Quantum Electron. 32, 2025–2036 (1996)ADSCrossRefGoogle Scholar
  238. 238.
    R. Brinkmann, C. Hansen: Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water laser surgery application, Appl. Opt. 39, 3361–3371 (2000)ADSCrossRefGoogle Scholar
  239. 239.
    N.M. Wannop, M.R. Dickinson, A. Charlton, T.A. King: Q-switching the erbium-YAG laser, J. Mod. Opt. 41, 2043–2053 (1994)ADSCrossRefGoogle Scholar
  240. 240.
    B. Pelz, M. K. Schott, M. H. Niemz: Electro-optic mode locking of an Erbium:YAG laser with a RF resonance transformer, Appl. Opt. 33, 364–367 (1994)ADSGoogle Scholar
  241. 241.
    H. Voss, F. Massmann: Diode pumped, Q-switched erbium lasers with short pulse duration, OSA Trends Opt. Photonics Ser. 10, 217–221 (Opt. Soc. Am., Washington, DC 1997)Google Scholar
  242. 242.
    E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skid-more, M. A. Emanuel, S.A. Payne: 115-W Tm:YAG diode-pumped solid-state laser, IEEE J. Quantum Electron. 33, 1592–1600 (1997)CrossRefADSGoogle Scholar
  243. 243.
    C. Li, J. Song, D. Shen, N.S. Kim, K. Ueda, Y. Huo, S. He, Y. Cao: Diode-pumped high-efficiency Tm:YAG lasers, Opt. Express 4, 12–18 (1999)ADSCrossRefGoogle Scholar
  244. 244.
    A. Finch, J. H. Flint: Diode-pumped 6-mJ repetitively-Q-switched Tm,Ho,YLF laser, CLEO’95, Tech. Digest Series 15, Paper CWH2 232 (1995)Google Scholar
  245. 245.
    S. Schnell, V.G. Ostroumov, J. Brequet, W.A.R. Lüthy, H.P. Weber, I. A. Scherbakov: Acoustooptic Q-switching of erbium lasers, IEEE J. Quantum Electron. 26, 1111–1114 (1990)CrossRefADSGoogle Scholar
  246. 246.
    P. Maak, L. Jakab, P. Richter, H. J. Eichler, B. Liu: Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-µm wavelength, Appl. Opt. 39, 3053–3059 (2000)ADSCrossRefGoogle Scholar
  247. 247.
    I. N. Court, K. K. von Willisen: Frustrated total internal reflection and application of its principle to laser cavity design, J. Appl. Opt. 3, 719–726 (1964)ADSCrossRefGoogle Scholar
  248. 248.
    Kh. S. Bagdasarov, V.P. Danilov, V.I. Zhekov, T. M. Murina, A.A. Manenkov, M.I. Timoshechkin, A.M. Prokhorov: Pulse-periodic Y3Al5O12:Er3+ laser with high activator concentration, Sov. J. Quantum Electron. 8, 83 (1978)CrossRefADSGoogle Scholar
  249. 249.
    F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A.V. Kharkovskiy, S.I. Khomenko: Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser, Opt. Commun. 103, 398–404 (1993)ADSCrossRefGoogle Scholar
  250. 250.
    A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, W. Ertmer: 2.70 µm CrEr:YSGG with high output energy and FTIR-Q-Switch, Opt. Commun. 125, 90–94 (1996)ADSCrossRefGoogle Scholar
  251. 251.
    H. J. Eichler, B. Liu, M. Kayser, S.I. Khomenko: Er:YAG-laser at 2.94 µm Q-switched by a FTIR-shutter with silicon output coupler and polarizer, Opt. Mater. 5, 259–265 (1996)CrossRefGoogle Scholar
  252. 252.
    Y. T. Tzong, M. Birnbaum: Q-switched 2-µm lasers by use of a Cr2+:ZnSe saturable absorber, Appl. Opt. 40, 6633–6637 (2001)ADSCrossRefGoogle Scholar
  253. 253.
    E. Sorokin, I. T. Sorokina: Coupled-cavity passive Q-switching, paper CThO6, Conference on Lasers and Electro-Optics Europe, Nice, France 2000; in CLEO Europe’2000 Tech. Digest (2000) p. 359Google Scholar
  254. 254.
    A.M. Malyarevich, I.A. Denisov, N.N. Posnov, P.V. Prokoshin, K.V. Yumashev, A. A. Lipovskii: PbS(Se)-doped glasses as passive Q-switches for 1.5-µm Er:glass and 2.1-µm Ho:YAG lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 34, 225 (Opt. Soc. Am., Washington, DC 2000)Google Scholar
  255. 255.
    A.M. Malyarevich, P.V. Prokoshin, M.I. Demchuk, K.V. Yumashev, A.A. Lipovskii: Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSedoped glass, Appl. Phys. Lett. 78, 572–573 (2001)ADSCrossRefGoogle Scholar
  256. 256.
    K. L. Vodopyanov, A. V. Lukashev, C. C. Phillips, I. T. Ferguson: Passive mode locking and Q-switching of an erbium 3 µm laser using thin InAs epilayers grown by molecular beam epitaxy, Appl. Phys. Lett. 59, 1658–1660 (1991)ADSCrossRefGoogle Scholar
  257. 257.
    K. L. Vodopyanov, A. V. Lukashev, C. C. Phillips: Nano-and picosecond 3 mm Er:YSGG lasers using InAs as passive Q-switchers and mode-lockers, Opt. Commun. 95, 87–91 (1993)ADSCrossRefGoogle Scholar
  258. 258.
    K. L. Vodopyanov, L. A. Kulevskii, P. P. Pashinin, A. M. Prokhorov: Water and ethanol as bleachable absorbers of radiation in an yttrium-erbium-aluminum garnet laser (λ = 2.94 µm), Sov. Phys. JETP 55, 1049–1051 (1982)Google Scholar
  259. 259.
    K. L. Vodopyanov, R. Shori, O. M. Stafsudd: Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol, Appl. Phys. Lett. 72, 2211–2213 (1998)ADSCrossRefGoogle Scholar
  260. 260.
    Yu. D. Zavartsev, A.I. Zagumennyi, L.A. Kulevskii, A.V. Lukashev, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov: Q-switching in a Cr3+:Yb3+:Ho3+:YSGG crystal laser based on the 5I65I7 (λ = 2.92 µm) transition, J. Quantum Electron. 29, 295–297 (1999) [transl. from: Kvant. Elektron. 27, 13–15 (1999)]CrossRefADSGoogle Scholar
  261. 261.
    J. Breguet, W. Lüthy, H.P. Weber: Q-switching of YAG:Er laser with a soap film, Opt. Commun. 82, 488–490 (1991)ADSCrossRefGoogle Scholar
  262. 262.
    B. C. Johnson, P. F. Moulton, A. Mooradian: Mode-locked operation of Co:MgF2 and Ni:MgF2 lasers, Opt. Lett. 10, 116–118 (1984)ADSGoogle Scholar
  263. 263.
    F. Heine, E. Heumann, G. Huber, K. L. Schlepper: Mode locking of room-temperature CW thulium and holmium lasers, Appl. Phys. Lett. 60, 1161–1162 (1992)ADSCrossRefGoogle Scholar
  264. 264.
    E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I. A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, OSA Trends Opt. Photonics 19 197–200, W.R. Bosenberg, M.M. Fejer (Eds.) (Opt. Soc. Am., Washington, DC 1998)Google Scholar
  265. 265.
    J. F. Pinto, L. Esterowitz, G. H. Rosenblatt: Continuous-wave mode-locked 2-µm Tm:YAG laser, Opt. Lett. 17, 731–732 (1992)ADSGoogle Scholar
  266. 266.
    T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, C. R. Pollock: Mode-locked Cr2+:ZnSe laser, Opt. Lett. 25, 168–170 (2000)ADSCrossRefGoogle Scholar
  267. 267.
    I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Active and passive mode-locking of the Cr2+:ZnSe laser, in Tech. Dig. Adv. Solid-State Lasers (Opt. Soc. Am., 2001), pp. 87–89Google Scholar
  268. 268.
    D. E. Spence, P. N. Kean, W. Sibbett: 60-fs pulse generation from a self-mode-locke Ti:sapphire laser, Opt. Lett. 16, 42–44 (1991)ADSCrossRefGoogle Scholar
  269. 269.
    U. Keller, K. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au: Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996)CrossRefGoogle Scholar
  270. 270.
    G. Steinmeyer, U. Morgner, M. Ostermeyer, F. Mitschke, H. Welling: Subpi-cosecond pulses near 1.9 µm from a synchronously pumped color-center laser, Opt. Lett. 18, 1544–1546 (1993)ADSCrossRefGoogle Scholar
  271. 271.
    K. Möllmann, M. Schrempel, B.K. Yu, W. Gellermann: Subpicosecond and continuous-wave laser operation of (F2 +)h and (F2 +)ah color-center lasers in the 2-µm range, Opt. Lett. 19, 960–962 (1994)ADSCrossRefGoogle Scholar
  272. 272.
    T. Brabec. Ch. Spielmann, P. F. Curley, F. Krausz: Kerr lens mode locking, Opt. Lett. 17, 1292–1294 (1992).ADSGoogle Scholar
  273. 273.
    C. L. Cesar, M. N. Islam, C. E. Soccolich, R. D. Feldman, R. F. Austin, K. German: Femtosecond KCl:Li and RbCl:Li color-center lasers near 2.8 µm with a HgCdTe multiple-quantum-well saturable absorber, Opt. Lett. 15, 1147–1149 (1990)ADSGoogle Scholar
  274. 274.
    P. F. Moulton: Pulsed-pumped operation of divalent transition-metal lasers, IEEE J. Quantum Electron. 18, 1185 (1982)ADSCrossRefGoogle Scholar
  275. 275.
    P. F. Moulton: Tunable paramagnetic-ion lasers, in Laser Handbook, Vol. 5, M. Bass, M.L. Stich (Eds.) (North-Holland, Amsterdam, 1985) p. 203Google Scholar
  276. 276.
    J. M. Breteau, D. Mekhenin, F. Auzel: Study of the Ni2+:MgF2 tunable laser, Rev. Phys. Appl. 22, 1419 (1987) (in French)Google Scholar
  277. 277.
    P. F. Moulton, A. Mooradian: Broadly tunable CW operation of Ni:MgF2 and Co:MgF2 lasers, Appl. Phys. Lett. 35, 838 (1979)ADSCrossRefGoogle Scholar
  278. 278.
    P. F. Moulton, A. Mooradian: Tunable transition-metal-doped solid-state lasers, in Laser Spectroscopy IV, H. Walther, K.W. Rothe (Eds.) (Springer, Heidelberg, Berlin 1979)Google Scholar
  279. 279.
    R. Moncorge, T. Benyattou: Excited-state absorption of Ni2+ in MgF2 and MgO, Phys. Rev. B 37, 9186 (1988)ADSCrossRefGoogle Scholar
  280. 280.
    R. G. Pappalardo, D.L. Wood, R. C. Linares: Optical absorption study of Nidoped oxide systems I, J. Chem. Phys. 35, 1460 (1961)ADSCrossRefGoogle Scholar
  281. 281.
    M. V. Iverson, W. A. Sibley: Temperature dependence of Ni2+ luminescence in KZnF3, MgF2 and MgO, J. Lumin. 20, 311 (1979)CrossRefGoogle Scholar
  282. 282.
    J. Koetke, K. Petermann, G. Huber: Infrared excited state absorption of Ni2+-doped crystals, J. Lumin. 60&61, 197–200 (1994)CrossRefGoogle Scholar
  283. 283.
    J. Koetke, K. Petermann, G. Huber: Spectroscopy of Ni2+-doped garnets and perovskites for solid state lasers, J. Lumin. 48&49, 564–568 (1991)CrossRefGoogle Scholar
  284. 284.
    D. Welford, P. F. Moulton: Room-temperature operation of a Co:MgF2 laser, Opt. Lett. 13, 975 (1988)ADSGoogle Scholar
  285. 285.
    H. Manaa, Y. Guyot, R. Moncorge: Spectroscopic and laser properties of Co2+-doped single crystals, Phys. Rev. B 48, 3633 (1993)ADSCrossRefGoogle Scholar
  286. 286.
    D.M. Rines, P.F. Moulton, D. Welford, G. A. Rines: High-energy operation of a Co:MgF2 laser, Opt. Lett. 19, 628 (1994)ADSGoogle Scholar
  287. 287.
    R. G. Pappalardo, D. L. Wood, R. C. Linares: Optical absorption study of Codoped oxide systems II, J. Chem. Phys. 35, 2041 (1961)ADSCrossRefGoogle Scholar
  288. 288.
    S. Lovold, P. F. Moulton, D.K. Killinger, N. Menyuk: Frequency tuning characteristics of a Q-switched Co:MgF2 laser 21, 202–208 (1985)Google Scholar
  289. 289.
    P. F. Moulton: An investigation of the Co:MgF2 laser system, IEEE J. Quantum Electron. 21, 1582–1595 (1985)ADSCrossRefGoogle Scholar
  290. 290.
    A. M. Fox, A. C. Maciel, J. F. Ryan: Efficient CW performance of a Co:MgF2 laser operating at 1.5-2.0 µm Opt. Commun. 59, 142–144 (1986)Google Scholar
  291. 291.
    W. Künzel, W. Knierim, U. Dürr: CW infrared laser action of optically pumped Co2+:KZnF3, Opt. Commun. 36, 383 (1981)ADSCrossRefGoogle Scholar
  292. 292.
    K. R. German, U. Dürr, V. Künzel: Tunable single-frequency continuous-wave laser action in Co2+:KZnF3, Opt. Lett. 11, 12–14 (1986)ADSCrossRefGoogle Scholar
  293. 293.
    U. Dürr: Vibronic solid state lasers: the transition metal ion laser, Laser und Optoelektronik 15, 31–39 (1983)Google Scholar
  294. 294.
    M. D. Sturge: Temperature dependence of multiphonon nonradiative decay at an isolated impurity center, Phys. Rev. B. 8, 6–14 (1973)ADSCrossRefGoogle Scholar
  295. 295.
    A. Di Lieto: Development of a CW Co:MgF2 laser, Opt. Laser Eng. 39, 305–308 (2003)CrossRefGoogle Scholar
  296. 296.
    R.H. Page, L.D. DeLoach, K.I. Schaffers, F.D. Patel, R.L. Beach, S.A. Payne, W.F. Krupke: Recent developments in Cr2+-doped II-VI compound lasers, in OSA Trends Opt. Photonics 1, 130–136, S.A. Payne, C.R. Pollock (Eds.) (Opt. Soc. Am., Washington, DC 1996)Google Scholar
  297. 297.
    W. F. Krupke, R. H. Page, L. D. DeLoach, S. A. Payne: Transition-metal doped sulphide, selenide, and telluride laser crystal and lasers, US Patent 5,541,948 from July 30 (1996)Google Scholar
  298. 298.
    U. Hömmerich, X. Wu, V.R. Davis, S.B. Trivedi, K. Grasze, R. J. Chen, S.W. Kutcher: Demonstration of room-temperature laser action at 2.5 µm from Cr2+:Cd0.85Mn015Te, Opt. Lett. 22, 1180–1182 (1997)ADSCrossRefGoogle Scholar
  299. 299.
    S.B. Trivedi, K. Grasze, R. J. Chen, S.W. Kutcher, U. Hömmerich, X. Wu: Jae Tae Seo, Chromium doped cadmium manganese telluride: a novel solidgain media for mid-infrared lasers, Phys. Semicond. Dev. 2, 762–767 (1998)Google Scholar
  300. 300.
    K.L. Schepler, S. Kueck, L. Shiozawa: Cr2+ emission spectroscopy in CdSe, J. Lumin. 72–74, 116–117 (1997)CrossRefGoogle Scholar
  301. 301.
    J. McKay, K.L. Schepler, G.C. Catella: Efficient grating-tuned mid-infrared Cr2+:CdSe laser, Opt. Lett. 24, 1575–1577 (1999)ADSCrossRefGoogle Scholar
  302. 302.
    A. Sennaroglu, A. Ozgun Konza, C. R. Pollock: Continuous-wave power performance of a 2.47-µm Cr2+:ZnSe laser: experiment and modelling, IEEE J. Quantum Electron. 36, 1199–1205 (2000)CrossRefADSGoogle Scholar
  303. 303.
    I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, V. G. Shcherbitsky, V. E. Kisel, N. V. Kuleshov, V. I. Levchenko: Ultrabroadband tunable continuous-wave mid-infrared Cr:ZnSe lasers, to be publishedGoogle Scholar
  304. 304.
    A.V. Podlipensky, V. G. Shcherbitsky, N.V. Kuleshov, V.I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, S. Kück: Efficient laser operation and continuous-wave diode pumping of Cr2+: ZnSe single crystals, Appl. Phys. B. 72, 253–255 (2001)ADSGoogle Scholar
  305. 305.
    G. Tocci, M. Vannini, E. Giorgetti, E. Sorokin, I. Sorokina, to be publishedGoogle Scholar
  306. 306.
    T. D. Krauss, F.W. Wise: Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe and ZnS, Appl. Phys. Lett. 65, 1739–1741 (1994)ADSCrossRefGoogle Scholar
  307. 307.
    M.E. Innocenzi, R.T. Swimm, M. Bass, R.H. French, M.R. Kokta: Optical absorption in undoped yttrium aluminum garnet, J. Appl. Phys. 68,3, 1200–1204, (1990)ADSCrossRefGoogle Scholar
  308. 308.
    G.-M. Schucan, R. G. Ispasoiu, A. M. Fox, J. F. Ryan: Ultrafast two-photon nonlinearities in CdSe near 1.5 µm studied by interferometric autocorrelation, IEEE J. Quantum Electronics 34, 1374 (1998)CrossRefADSGoogle Scholar
  309. 309.
    Landolt Börnstein, Numerical data and functional relationships in Science and Technology, in O. Madelung (Ed.): Non-Tetrahedrally Bonded Elements and Binary Compounds I, New Series, Group III, Vol. 41c, Semiconductors (Springer, Berlin, Heidelberg 1998)Google Scholar
  310. 310.
    E. Sorokin, I.T. Sorokina, A. DiLieto, M. Tonelli, R.H. Page: Tunable diode-pumped continuous-wave single crystal and ceramic Cr2+:ZnSe lasers, in CLEO/Pacific Rim 2001, Tokyo Tech. Digest (2001) paper WJPD1-1Google Scholar
  311. 311.
    E. Sorokin, I.T. Sorokina, A. DiLieto, M. Tonelli, P. Minguzzi: Mode-locked ceramic Cr2+:ZnSe laser, Advanced Solid-State Photonics’2003, St. Antonio, USA (2003) paper TUB-17Google Scholar
  312. 312.
    A. Zunger: Solid State Physics 89 (Academic Press, New York 1986) p. 275Google Scholar
  313. 313.
    J. T. Vallin, G. A. Slack, S. Roberts, A. E. Hughes: Near and far infrared absorption in Cr doped ZnSe, Solid State Commun. 7, 1211 (1969)CrossRefADSGoogle Scholar
  314. 314.
    S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda: 100 h II-VI blue-green laser diode, Electron. Lett. 32, 552 (1996)CrossRefGoogle Scholar
  315. 315.
    H. Ulchiike: Review of flat-panel displays, liquid crystal displays, plasma displays, etc., in Proc. Fourth Int. Workshop of Electroluminescence, S. Shionoya, H. Kobayashi (Eds.) (Springer, Berlin, Heidelberg 1989) p. 238–245Google Scholar
  316. 316.
    K. Grasza, S.B. Trivedi, Yu-Zengchen, S.W. Kutcher, W. Palosz, G. A. Brost: Low supersaturation nucleation and contactless growth of photorefractive ZnTe crystals, J. Crystal Growth 174, 719–725 (1997)CrossRefADSGoogle Scholar
  317. 317.
    A. Partovi, J. Millerd, E.M. Garmire, M. Ziari, W.H. Steier, S.B. Trivedi, M.B. Klein: Photorefractivity at 1.5 µm in CdTe:V, Appl. Phys. Lett. 57, 846–848 (1990)ADSCrossRefGoogle Scholar
  318. 318.
    A. Fazzio, M. J. Caldas, A. Zunger: Many-electron multiplet effects in the spectra of 3d-impurities in heteropolar semiconductors, Phys. Rev. B 30, 3430 (1984)ADSCrossRefGoogle Scholar
  319. 319.
    C. S. Kelley, F. Williams: Optical absorption spectra of chromium-doped zinc sulphide crystals, Phys. Rev. B 2, 3 (1970)ADSCrossRefGoogle Scholar
  320. 320.
    R. Pappalardo, R. E. Dietz: Absorption spectra of transition ions in CdS crystals, Phys. Rev. 123, 1188 (1961)ADSCrossRefGoogle Scholar
  321. 321.
    H. Nelkowski, G. Grebe: IR-luminescence of ZnS:Cr, J. Lumin. 1/2, 88–93 (1970)CrossRefGoogle Scholar
  322. 322.
    G. Grebe, H. J. Schulz: Interpretation of excitation spectra of ZnS:Cr2+ by fitting the eigenvalues of the Tanabe-Sugano matrices, Phys. Stat. Sol. (b) 54, 69–72 (1972)CrossRefADSGoogle Scholar
  323. 323.
    G. Grebe, H. J. Schulz: Luminescence of Cr2+ centers and related optical interactions involving crystal field levels of chromium ions in ZnS, Z. Naturf. 29a, 1803 (1974)ADSGoogle Scholar
  324. 324.
    G. Grebe, G. Roussos, H. J. Schulz: Infrared luminescence of ZnSe:Cr crystals, J. Lumin. 12/13, 701 (1976)CrossRefGoogle Scholar
  325. 325.
    B.D. Bhattacharya: Jahn-Teller effect in ESR study of Cr2+ in II-VI semiconductors, Phys. Stat. Sol. (b) 71, K181–K185 (1975)CrossRefADSGoogle Scholar
  326. 326.
    A. L. Natadze, A. I. Ryskin: Jahn-Teller coupling of Cr2+-ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment, Phys. Stat. Sol. (b) 97, 175–185 (1980)CrossRefADSGoogle Scholar
  327. 327.
    R. Renz, H. J. Schulz: Temperature dependence of the lifetime of excited states for 3d transition element centers in II-VI crystals, J. Lumin. 24/25, 221–224 (1981)CrossRefGoogle Scholar
  328. 328.
    G. Goetz, H. J. Schulz: Decay of internal luminescence transitions of 3d-impurities in II-VI compounds-recent experiments and refined interpretations, J. Lumin. 40/41, 415–416 (1988)CrossRefGoogle Scholar
  329. 329.
    P. Dahan, V. Fleurov: Possibility of a metastable state for transition-metal impurity in semiconductor, Phys. Rev. B 53, 12845 (1996)ADSCrossRefGoogle Scholar
  330. 330.
    A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.H. Su, S. Feth, R.H. Page, K.I. Schaffers, S.A. Payne: Preparation conditions of chromium doped ZnSe and their infrared luminescence properties, J. Crystal Growth 225, 249–256 (2001)CrossRefADSGoogle Scholar
  331. 331.
    V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, L. I. Postnova, V. I. Levchenko, E. Sorokin, I. T. Sorokina: Luminescence lifetime measurements in diffusion doped Cr:ZnSe, ECLEO’2003, Munich (June 2003)Google Scholar
  332. 332.
    J. McKay, K. L. Schepler: Solid-state and diode-laser technology review, May 21–24, Albuquerque, NM, SS-6 (2001)Google Scholar
  333. 333.
    S.B. Mirov, V.V. Fedorov, K. Graham, I. S. Moskalev, E. Sorokin, I.T. Sorokina, V. Gapontsev, D. Gapontsev, V.V. Badikov, V.V. Panyutin: Diode, fiber, and potentially electrically pumped Cr2+:ZnS mid-IR external cavity and microchip lasers, Tech. Digest 5th Int. Conf. Mid-Infrared Optoelectronics Materials and Devices, Sept. 2002, Annapolis, MD (2002)Google Scholar
  334. 334.
    I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, A. Di Lieto, M. Tonelli: Continuous-wave tunable Cr2+:ZnS laser, Appl. Phys B 74, 607–611 (2002)ADSCrossRefGoogle Scholar
  335. 335.
    P. Albers, E. Stark, G. Huber: Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire, J. Opt. Soc. Am. B 3, 134 (1986)ADSCrossRefGoogle Scholar
  336. 336.
    R.H. Page, J. A. Skidmore, K.I. Schaffers, R. J. Beach, S.A. Payne, W. F. Krupke: Demonstrations of diode-pumped and grating tuned ZnSe:Cr2+ lasers, Opt. Soc. Am. Trends Opt. Photonics, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997), pp. 208–210Google Scholar
  337. 337.
    I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. Page, K. Schaffers: Efficient broadly tunable Cr2+:ZnSe laser, Conf. Lasers and Electro-Optics Europe, Nice, France, in CLEO Europe’2000 Tech. Digest (2000) p. 261, paper CWH4Google Scholar
  338. 338.
    E. Sorokin, I. T. Sorokina, R. H. Page: Room-temperature CW diode-pumped Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 101–105, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  339. 339.
    M. Mond, E. Heumann, G. Huber, H. Kretschmann, S. Kück, A.V. Podlipensky, V. G. Shcherbitsky, N.V. Kuleshov, V.I. Levchenko, V. N. Yakimovich: Continuous-wave diode pumped Cr2+:ZnSe and high power laser operation, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 162–165, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  340. 340.
    E. Sorokin, I. T. Sorokina: Tunable diode-pumped continuous-wave Cr2+:ZnSe laser, Appl. Phys. Lett. 80, 3289–3291 (2002)ADSCrossRefGoogle Scholar
  341. 341.
    M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kück, V.I. Levchenko, V.N. Yakimovich, V. G. Shcherbitsky, V.E. Kisel, N.V. Kuleshov, M. Rattunde, J. Schmitz, R. Kiefer, J. Wagner: 1.9-µm and 2.0-µm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Lett. 27, 1034–1036 (2002)ADSCrossRefGoogle Scholar
  342. 342.
    T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, C. R. Pollock: Mode-locked Cr2+:ZnSe laser, Opt. Lett. 25, 168–170 (2000)ADSCrossRefGoogle Scholar
  343. 343.
    I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Active and passive mode-locking of the Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 157–161, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  344. 344.
    I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Tunable diode-pumped continuous-wave operation and passive mode-locking of Cr2+:ZnSe laser, Tech. Digest CLEO/Europe Focus Meeting 2001, Munich (2001)Google Scholar
  345. 345.
    G. J. Wagner, T. J. Carrig: Power scaling of Cr2+:ZnSe lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 506–510, C. Marshall (Ed.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  346. 346.
    J.B. McKay, W.B. Roh, K.L. Schepler: 4.2 W Cr2+:ZnSe face cooled disk laser, paper CMY3, in Opt. Soc. Am. Trends in Optics and Photonics, Vol. 73, Conference on Lasers and Electro-Optics, OSA Tech. Digest, Postconference Edition (Opt. Soc. Am., Washington, DC 2002), pp. 119–120Google Scholar
  347. 347.
    W. Alford, G. Wagner, J. Keene, T. Carrig: High power and Q-switched Cr:ZnSe laser, paper MA-8, Advanced Solid-State Photonics 2003, St. Antonio, USA (2003)Google Scholar
  348. 348.
    M. Mond, D. Albrecht, H. M. Kretschmann, E. Heumann, G. Huber, S. Kück, V.I. Levchenko, V.N. Yakimovich, V.G. Shcherbitsky, V.E. Kisel, N. V. Kuleshov: Er doped fiber amplifier pumped Cr2+:ZnSe laser, Phys. Stat. Sol. (a) 188(4), R3–R5 (2001)ADSCrossRefGoogle Scholar
  349. 349.
    S. B. Mirov, V. V. Fedorov, K. Graham, I. Moskalev, V. Badikov, V. Panyutin: Er-fiber laser pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Lett. 27, 909–911 (2002)ADSCrossRefGoogle Scholar
  350. 350.
    D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi: Semiconductor saturable absorber mirror assisted Kerr-Lens mode-locked Ti:sapphire laser, producing cycles in the two-cycle regime, Opt. Lett. 24, 631–633 (1999)ADSCrossRefGoogle Scholar
  351. 351.
    U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi: Sub-two-cycle pulses from a Kerr-Lens mode-locked Ti:sapphire laser, Opt. Lett. 24, 920–922 (1999)ADSCrossRefGoogle Scholar
  352. 352.
    J.T. Seo, U. Hömmerich, H. Zong, S.B. Trivedi, S.W. Kutcher, C.C. Wang, R. J. Chen: Mid-infrared lasing from a novel optical material: Chromiumdoped Cd0.55Mn0.45Te, Phys. Stat. Sol. (a) 175, R 3 (1999)ADSCrossRefGoogle Scholar
  353. 353.
    J. McKay, D. Krause, K.L. Schepler: Optimization of Cr2+:CdSe for efficient laser operation, OSA Trends Opt. Photonics 34, 218–224, H. Injeyan, U. Keller, Ch. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2000)Google Scholar
  354. 354.
    P.A. Champert, S.V. Popov, J.R. Taylor: Efficient lasing of Cr2+:ZnSe at 2.2. µm pumped by all-fiber-format seeded Raman source, Electron. Lett. 38, 448 (2002)CrossRefGoogle Scholar
  355. 355.
    T. J. Carrig, G. J. Wagner, I. T. McKinnie, W. J. Alford: Recent progress in the development of practical Cr:ZnSe lasers, paper presented at the Solid State & Diode Laser Technology Review, Albuquerque, NM (2002)Google Scholar
  356. 356.
    T. J. Carrig: Transition-metal-doped chalcogenide lasers, J. Electron. Mater. 31, 759–769 (July 2002)CrossRefADSGoogle Scholar
  357. 357.
    J. F. Wang, A. Omino, M. Isshiki: Bridgman growth of twin-free ZnSe single crystals, Mater. Sci. Eng. B 83, 185–191 (2001)CrossRefGoogle Scholar
  358. 358.
    C.S. Fang, Q.T. Gu, J.Q. Wei, Q.W. Pan, W. Shi, J.Y. Wang: Growth of ZnSe single crystals, J. Crystal Growth 209, 542–546 (2000)CrossRefADSGoogle Scholar
  359. 359.
    V. I. Levchenko, V. N. Yakimovich, L. I. Postnova, V. I. Konstantinov, V. P. Mikhailov, N. V. Kuleshov: Preparation and properties of bulk ZnSe:Cr single crystals, J. Crystal Growth 198–199, 980–983 (1999)CrossRefGoogle Scholar
  360. 360.
    A. Burger, J.-O. Ndap, K. Chattopadhyay, O.O. Adetunji, D.E. Zelmon, A. Burger: Thermal diffusion of Cr2+ in bulk ZnSe, J. Crystal Growth 240, 176–184 (2002)CrossRefGoogle Scholar
  361. 361.
    A.V. Podlipensky, V.G. Shcherbitsky, N.V. Kuleshov, V.P. Mikhailov, V. I. Levchenko, V. N. Yakimovich, L. I. Postnova, V. I. Konstantinov: Pulsed laser operation of diffusion-doped Cr2+:ZnSe, Opt. Commun. 167, 129 (1999)ADSCrossRefGoogle Scholar
  362. 362.
    G.J. Wagner, T.J. Carrig, R.H. Jarman, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, A. Burger: High-efficiency, broadly tunable continuous-wave Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 427–434, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  363. 363.
    I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. Page, K. Schaffers: 0.5 W efficient broadly tunable continous-wave Cr2+:ZnSe laser, OSA Trends Opt. Photonics 34, 188–193, H. Injeyan, U. Keller, Ch. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2000)Google Scholar
  364. 364.
    D. Findlay, R. A. Clay: Measurement of internal losses in 4-level lasers, Phys. Lett. 20, 277 (1966)ADSCrossRefGoogle Scholar
  365. 365.
    V. L. Kalashnikov, E. Sorokin, I. T. Sorokina: Multipulse operation and limits of the Kerr-lens mode locking stability, IEEE J. Quantum Electron. 39, 323–336 (2003)CrossRefADSGoogle Scholar
  366. 366.
    J. A. Skidmore, B.L. Freitas, C.E. Reinhardt, E. J. Utterback, R.H. Page, M. A. Emanuel: High-power operation of InGaAsP/InP laser diode array at 1.73 µm, IEEE Photonics Technol. Lett. 9, 1334 (1997)CrossRefADSGoogle Scholar
  367. 367.
    J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, S. Kutcher: Slope efficiency and tunability of a Cr2+-doped Cd0.85Mn0.15Te mid-infrared laser, Opt. Commun. 153, 267–270 (1998)ADSCrossRefGoogle Scholar
  368. 368.
    J.T. Seo, U. Hömmerich, S.B. Trivedi, R.J. Chen, S. Kutcher, C. C. Wang, H. Zong, P. R. Boyd, W. Tardiff: Spectroscopy and tunable mid-infrared lasing of a novel gain-medium: Cr2+-doped Cd0.85Mn0.15Te, Korean Phys. Society 34, 221–226 (1999)Google Scholar
  369. 369.
    U. Hömmerich, J.T. Seo, M. Turner, A. Bluiett, S.B. Trivedi, H. Zong, S. Kutcher, C.C. Wang, R.J. Chen: Mid-infrared laser development based on transition metal doped cadmium manganese telluride, J. Lumin. 87–89, 1143–1145 (2000)CrossRefGoogle Scholar
  370. 370.
    S.B. Trivedi, S.W. Kutcher, C.C. Wang, G.V. Jagannathan, U. Hömmerich, A.G. Bluiett, M. Turner, J.T. Seo, K.L. Schepler, B. Schumm, P.R. Boyd, G. Green: Transition metal doped cadmium manganese telluride: A new material for tunable mid-infrared lasing, J. Electron. Mater. 30, 728 (2001)CrossRefADSGoogle Scholar
  371. 371.
    A.G. Bluiett, U. Hömmerich, J.T. Seo, R. Shah, S.B. Trivedi, S.W. Kutcher, C.C. Wang, P.R. Boyd: Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+ doped II-VI semiconductors, J. Electron. Mater. 31, 806–810 (July 2002)Google Scholar
  372. 372.
    J. McKay, K. L. Schepler, G. Catella: Kilohertz, 2.6 µm Cr2+:CdSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 420, M. Fejer, H. Injeyan, U. Keller (Eds.) (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  373. 373.
    J. McKay, W. B. Roh, K. L. Schepler: Extended Mid-IR tuning of a Cr2+:CdSe laser, Opt. Soc. Am. Trends Opt. Photonics Adv. Solid-State Lasers 68, 371–373 (Opt. Soc. Am., Washington, DC 2002)Google Scholar
  374. 374.
    P. B. Klein, J. E. Furneaux, R. L. Henry: Laser oscillation at 3.53 µm from Fe2+ in n-InP:FeAppl. Phys. Lett. 42, 638 (1983)Google Scholar
  375. 375.
    J. J. Adams, C. Bibeau, R. H. Page, S. A. Payne: Tunable laser action at 4 µm from Fe:ZnSe, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 435–440, M. Fejer, H. Injeyan, U. Keller (Eds.) (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  376. 376.
    J. J. Adams, C. Bibeau, R.H. Page, D.M. Krol, L.H. Furu, S.A. Payne: 4.0-4.5-µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material, Opt. Lett. 24, 1720 (1999)ADSCrossRefGoogle Scholar
  377. 377.
    W. S. Peloach, G. J. Wagner, T. J. Carrig, W. J. Scharpf: Mid-wave ZGP OPOs pumped by a Cr:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 670–674, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  378. 378.
    I.T. McKinnie, G.J. Wagner, S. Christensen, T. Carrig, C.B. Rawle: Dual band mid-wave/long-wave ZGP OPO pumped tuned by a Cr:ZnSe laser, in Opt. Soc. Am. Trends in Optics and Photonics 73, 170–171, Conf. Lasers Electro-Optics, OSA Technical Digest, Postconf. Edition (Opt. Soc. Am., Washington, DC 2002)Google Scholar
  379. 379.
    W. Beall Fowler: Physics of Color Centers, W. Beall Fowler (Ed.) (Academic Press, New York 1968) Chap. 2Google Scholar
  380. 380.
    L. F. Mollenauer: Color center lasers, in Quantum Electronics, part B, vol. 15, C. L. Tang (Ed.) (Academic Press, New York 1979) Chap. 6Google Scholar
  381. 381.
    L.F. Mollenauer: in Laser Handbook Vol. 4, M. Bass (Ed.) (North-Holland, Amsterdam 1985)Google Scholar
  382. 382.
    L. F. Mollenauer: Colorcenter lasers, in Tunable Lasers, 2nd. edition, L. F. Mollenauer, J.C. White, C.R. Pollock (Eds.) Springer-Verlag, Berlin (1992), p. 225–275Google Scholar
  383. 383.
    C. R. Pollock: Optical properties of laser-active color centers, J. Lumin. 35, 65–78 (1986)CrossRefGoogle Scholar
  384. 384.
    C. R. Pollock: Color center lasers, in Encyclopedia of Lasers and Optical Technology, R. A. Meyers (Ed.) (Academic, San Diego 1991)Google Scholar
  385. 385.
    T. T. Basiev, S.B. Mirov, V.V. Osiko: Room-temperature color-center lasers, IEEE J. Quantum Electron. 24, 1052 (1988)ADSCrossRefGoogle Scholar
  386. 386.
    T. T. Basiev, S.B. Mirov: Room-Temperature Tunable Color-Center Lasers, Laser Sci. Technol. Ser. 16, p. 1 (Gordon, Breach, New York 1994)Google Scholar
  387. 387.
    S.B. Mirov, T. Basiev: Progress in color center lasers, IEEE J. Sel. Top. Quantum Electron. 1, 22–30 (1995)CrossRefGoogle Scholar
  388. 388.
    B. Fritz, E. Menke: Laser effect in KCl with Fa(Li) centers, Solid-State Commun. 3, 61 (1965)CrossRefADSGoogle Scholar
  389. 389.
    L. F. Mollenauer, D. H. Olson: A broadly tunable CW laser using color centers, Appl. Phys. Lett. 24, 386 (1974)ADSCrossRefGoogle Scholar
  390. 390.
    L. F. Mollenauer, D. H. Olson: Broadly tunable lasers using color centers, J. Appl. Phys. 46, 3109–3118 (1975)ADSCrossRefGoogle Scholar
  391. 391.
    K.R. German: Optimization of FA(II) and FB(II) color-center lasers, J. Opt. Soc. Am. B 3, 149–157 (1986)ADSGoogle Scholar
  392. 392.
    R. Beigang, G. Liftin, H. Welling: Frequency behavior and linewidth of CW single mode color-center lasers, Opt. Commun. 22, 269–271 (1977)ADSCrossRefGoogle Scholar
  393. 393.
    C. H. Breant, T. Baer, D. Nesbitt, J. L. Hall: State-dependent hyperfine coupling of HF studied with a frequency controlled color-center laser spectrometer, in Laser Spectroscopy VI, H. P. Weber, W. Lüthy (Eds.) (Springer, Berlin, Heidelberg 1983)Google Scholar
  394. 394.
    H. Welling, G. Liftin, R. Beigang: Tunable infrared lasers using color centers, in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten (Eds.) (Springer, Berlin, Heidelberg 1977) p. 370–375Google Scholar
  395. 395.
    C. R. Pollock, J.A. Jennings, F.R. Petersen, J. S. Wells, R.E. Drullinger, E. C. Beaty, K. M. Evenson: Direct frequency measurements of transitions at 520 THz (576 nm) in iodine and 260 THz (1.15 µm) in neon, Opt. Lett. 8, 133 (1983)ADSGoogle Scholar
  396. 396.
    R. Beigang, J. J. Wynne: Atomic Rydberg-state spectroscopy of Ca I using pulsed color-center lasers, Opt. Lett. 6, 295–297 (1981)ADSCrossRefGoogle Scholar
  397. 397.
    A. S. Subdo, M. M. T. Loy, P. A. Roland, R. Beigang: High peak power FA(II) color-center laser for time-resolved infrared spectroscopy, Opt. Commun. 37, 417–420 (1981)ADSCrossRefGoogle Scholar
  398. 398.
    R. Beigang: Color center laser pumped by a flashlamp-pumped dye laser, Opt. Commun. 34, 249–251 (1980)ADSCrossRefGoogle Scholar
  399. 399.
    G. Liftin, R. Beigang, H. Welling: Tunable CW laser operation in FB(II) type color-center crystals, Appl. Phys. Lett. 31, 381 (1977)ADSCrossRefGoogle Scholar
  400. 400.
    K. P. Koch, G. Liftin, H. Welling: Continuous-wave laser oscillation with extended tuning range in FA(II)-FB(II) color-center lasers, Opt. Lett. 4, 387 (1979)ADSGoogle Scholar
  401. 401.
    I. Schneider, C.L. Marquardt: Tunable, CW laser action using (F2 +) centers in Li-doped KCl, Opt. Lett. 5, 214 (1980)ADSGoogle Scholar
  402. 402.
    I. Schneider, C. L. Marquardt: Broadly tunable oscillator-amplifier system using lithium (F2 +)A centers in KCl, Opt. Lett. 10, 13–15 (1985)ADSCrossRefGoogle Scholar
  403. 403.
    I. Schneider, S.C. Moss: Color-center laser continuously tunable from 1.67 to 2.46 µm, Opt. Lett. 8, 7–8 (1983)ADSCrossRefGoogle Scholar
  404. 404.
    K. Möllmann, M. Schrempel: Bing Kun Yu, W. Gellermann: Subpicosecond and continuous-wave laser operation of (F2 +)Hand (F2 +)AH color-center lasers in the 2-µm range, Opt. Lett. 19, 960–962 (1994)ADSGoogle Scholar
  405. 405.
    I. Schneider: Continuous tuning of a color-center laser between 2 and 4 µm, Opt. Lett. 7, 271 (1982)ADSGoogle Scholar
  406. 406.
    R.W. Tkach, T. R. Gosnell, A.J. Sievers: Solid-state vibrational laser KBr:CN-, Opt. Lett. 10, 122 (1984).ADSGoogle Scholar
  407. 407.
    T. R. Gosnell, A. J. Sievers, C. R. Pollock: Continuous-wave operation of the KBr:CN solid-state vibration laser in the 5-µm region, Opt. Lett. 10, 125 (1985)ADSGoogle Scholar
  408. 408.
    T. R. Gosnell, R.W. Tkach, A.J. Sievers: High temperature vibrational fluorescence of CN ions in alkali halides, Solid-State Commun. 53, 419–421 (1985)CrossRefADSGoogle Scholar
  409. 409.
    W. Gellermann, F. üthy: Stable multi-line CW vibration laser near 5 µm based on FH(CN) centers in CsBr, Opt. Commun. 72, 214–218 (1989)ADSCrossRefGoogle Scholar
  410. 410.
    W. Gellermann, Y. Yang, F. Lüthy: Laser operation near 5 µm of vibrationally excited F-center/CN molecule defect pairs in CsCl crystals, pumped in the visible, Opt. Commun. 57, 196–200 (1986)ADSCrossRefGoogle Scholar
  411. 411.
    E.P. Chicklis, C.S. Naiman, R. C. Folweiler, D.R. Gabbe, H.P. Jenssen, A. Linz: High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF, Appl. Phys. Lett. 19, 119–120 (1971)ADSCrossRefGoogle Scholar
  412. 412.
    J. A. Caird, L. G. DeShazer, J. Nella: Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3, IEEE J. Quantum Electron. 11, 874–881 (1975)ADSCrossRefGoogle Scholar
  413. 413.
    A. A. Kaminskii, T. I. Butaeva, A. O. Ivanov, I. V. Mochalov, A. G. Petrosyan, G. I. Rogov, V. A. Fedorov: New data on stimulated emission of crystals containing Er3+ and Ho3+ ions, Sov. Tech. Phys. Lett. 2, 308–310 (1976)Google Scholar
  414. 414.
    E.W. Duczynski, G. Huber, V. G. Ostroumov, I.A. Shcherbakov: CW double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets, Appl. Phys. Lett. 48, 1562–1563 (1986)ADSCrossRefGoogle Scholar
  415. 415.
    L. Esterowitz, R. Allen, L. Goldberg, J. F. Weller, M. Storm, I. Abella: Diodepumped 2 µm holmium laser, in Tunable Solid-State Lasers II, Springer Ser. Opt. Sci. 52 (Springer, Berlin, Heidelberg 1986) pp. 291–292Google Scholar
  416. 416.
    G.J. Kintz, L. Esterowitz, R. Allen: CW diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser, Electron. Lett. 23, 616 (1987)CrossRefGoogle Scholar
  417. 417.
    T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich: Continuous-wave operation at 2.1 µm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al3O12 laser at 300 K, Opt. Lett. 12, 678–680 (1987)ADSCrossRefGoogle Scholar
  418. 418.
    G. J. Kintz, R. Allen, L. Esterowitz: CW laser emission at 2.02 µm from diode-pumped Tm3+:YAG at room temperature, paper FB2, Proc. Conf. Lasers and Electro-Optics, CLEO’88 (Opt. Soc. Am., Washington, DC 1988)Google Scholar
  419. 419.
    B.T. McGuckin, R.T. Menzies: Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 µm, IEEE J. Quantum Electron. 28, 1025–1028 (1992)ADSCrossRefGoogle Scholar
  420. 420.
    A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, H. P. Jenssen: A diode-laser-pumped tunable Ho:YLF laser in the 2 µm region, Appl. Phys. B 57, 3172–3175 (1993)Google Scholar
  421. 421.
    T. J. Kane, T. S. Kubo: Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG, OSA Proc. Adv. Solid-State Lasers 6, 136–139 (Opt. Soc. Am., Washington, DC 1990)Google Scholar
  422. 422.
    W. S. Rabinovich, S. R. Bowman, B. J. Feldman, M. J. Winings: Tunable laser pumped 3 µm Ho:YAlO3 laser, IEEE J. Quantum Electron. 27, 895–897 (1990)ADSCrossRefGoogle Scholar
  423. 423.
    A.F. Umyskov, Yu. D. Zavartsev, A.I. Zagumennyi, V.V. Osiko, P.A. Studenikin: Cr3+:Yb3+:Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84-3.05 µm, Sov. J. Quantum Electron. 26, 563–564 (1996) [transl. from: Kvant. Elektron. 23, 579–580 (1996)]CrossRefADSGoogle Scholar
  424. 424.
    A. Diening, S. Kück: Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys. 87, 4063 (2000)ADSCrossRefGoogle Scholar
  425. 425.
    E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I.A. Shcherbakov, V. Carozzo, M. Tonelli: A novel CW mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, paper CWM1, Conf. Lasers Electro-Optics, Techn. Digest (1998) p. 296Google Scholar
  426. 426.
    F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, P. Laporta: Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho:YLF and Tm-Ho:BaYF: a comparative analysis, Appl. Phys. B 75, 817–822 (2002)ADSCrossRefGoogle Scholar
  427. 427.
    H. Nakajima, T. Yokozawa, T. Yamamoto, H. Hara, N. Djeu: Power optimization of 2 µm Tm,Ho:YAG laser in monolithic crystal, Jpn. J. Appl. Phys. 33, 1010–1011 (1994)ADSCrossRefGoogle Scholar
  428. 428.
    C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, G.W. Turner, Ho:YAG laser pumped by 1.9-µm diode lasers, IEEE J. Quantum Electron. 31, 1603–1605 (1995)CrossRefADSGoogle Scholar
  429. 429.
    Yu. D. Zavartsev, V.V. Osiko, S.G. Semenkov, P.A. Studenikin, A. F. Umyskov: Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium-scandium-gallium garnet crystal, Sov. J. Quantum Electron. 23, 312–316 (1993) [transl. from: Kvant. Elektron. 20, 366–370 (1993)]CrossRefADSGoogle Scholar
  430. 430.
    A. M. Tabirian, H. P. Jenssen, A. Cassanho: Efficient, room temperature mid-infrared laser at 3.9 µm in Ho:BaY2F8, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 170–176 (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  431. 431.
    L.A. Pomeranz, P.A. Budni, M.L. Lemons, C.A. Miller, J.R. Mosto, T. M. Pollak, E. P. Chicklis: Power Scaling Performance of Tm:YLF and Tm:YALO Lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 458–462 (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  432. 432.
    R. A. Hayward, W. A. Clarkson, D. C Hanna: High-power diode-pumped room-temperature Tm:YAG and intracavity-pumped Ho:YAG lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 34, 90–94 (Opt. Soc. Am., Washington, DC 2000)Google Scholar
  433. 433.
    R. C Stonemann, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486–488 (1990)ADSCrossRefGoogle Scholar
  434. 434.
    R.C. Stonemann, L. Esterowitz: Efficient 1.94-µm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron. 1, 78–80 (1995)CrossRefGoogle Scholar
  435. 435.
    L. Fornasiero, N. Berner, B.-M. Dicks, E. Mix, V. Peters, K. Petermann, G. Huber: Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 µm, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 450–453 (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  436. 436.
    E. Sorokin, A.N. Alpatiev, I.T. Sorokina, A.I. Zagumennyi, I. A. Shcherbakov: Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 68, 347–350 (Opt. Soc. Am., Washington, DC 2002)Google Scholar
  437. 437.
    P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, I.A. Shcherbakov: GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Nd3+, Tm3+ and Er3+ ions, Quantum Electron. 25, 1162–1165 (1995)CrossRefADSGoogle Scholar
  438. 438.
    V. A. Mikhailov, Yu. D. Zavartzev, A. I. Zagumennyi, V. G. Ostroumov, P.A. Studenikin, E. Heumann, G. Huber, I.A. Shcherbakov: Tm3+:GdVO4-a new efficient medium for diode-pumped 2 µm lasers, Quantum Electron. 27, 13–14 (1997)CrossRefADSGoogle Scholar
  439. 439.
    Ch. P. Wyss, W. Lüthy, H.P. Weber, V.I. Vlasov, Yu. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov: Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 µm, J. Appl. Phys. B 67, 1–4 (1998)CrossRefGoogle Scholar
  440. 440.
    A. I. Zagumennyi, V. A. Mikhailov, Yu. D. Zavartsev, S. A. Koutovoi, F. Zerrouk, I.A. Shcherbakov: A diode-pumped 0.6 W CW Tm:GdVO4 microchip laser, CLEO/Europe-EQEC Focus Meeting 2001, Prog. Solid-State Lasers, Techn. Digest, p. 99, paper C-PSL 129Google Scholar
  441. 441.
    H. Saito, S. Chaddha, R. S. F. Chang, N. Djeu: Efficient 1.94-µm Tm3+ laser in YVO4 host, Opt. Lett. 17, 189–191 (1992)ADSGoogle Scholar
  442. 442.
    K. Ohta, H. Saito, M. Obara, N. Djeu: Characterization of a longitudinally pumped CW, room-temperature operation of Tm3+:YVO4 laser, Jpn. J. Appl. Phys. 32, 1651–1657 (1993)ADSCrossRefGoogle Scholar
  443. 443.
    J. F. Pinto, L. Esterowitz, G.H. Rosenblatt: Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm Opt. Lett. 19, 883–885Google Scholar
  444. 444.
    G. H. Rosenblatt, J. F. Pinto, R. C. Stonemann, L. Esterowitz: Continuously tunable 2.3 µm Tm:GSGG laser, LEOS’ 93 Conf. Proc. IEEE, 689–690 (1993)Google Scholar
  445. 445.
    F. Heine, E. Heumann, G. Huber, K. L. Schepler: Mode locking of room-temperature CW thulium and holmium lasers, Appl. Phys. Lett. 60, 1161–1162 (1992)ADSCrossRefGoogle Scholar
  446. 446.
    K. L. Schepler, B. D. Smith, F. Heine, P. A. Budni: Mode-locking of a diode-pumped Tm,Ho:YLF, OSA Proc. Adv. Solid-State Lasers 20, 257–259 (Opt. Soc. Am., Washington, DC 1994)Google Scholar
  447. 447.
    K. L. Vodop’yanov: Bleaching of water by intense light at the maximum of the A ∼ 3 µm absorption band, Sov. Phys. JETP 70, 114–121 (1990)Google Scholar
  448. 448.
    V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, S. L. Popov: Dispersion and absorption of liquid water in the infrared and radio regions, Opt. Spectrosc. 27, 430 (1969)ADSGoogle Scholar
  449. 449.
    F. Frauchiger, W. Lüthy: Interaction of 3 µm radiation with matter, Opt. Quantum Electron. 19, 231 (1987)CrossRefGoogle Scholar
  450. 450.
    E.V. Zharikov, V.J. Zhekov, L.A. Kulevskii, T.M. Murina, V.V. Osiko, A.M. Prokhorov, V.D. Savel’ev, V.V. Smirnov, B.P. Starikov, M.I. Timoshechkin: Stimulated emission from Er3+-ions in yttrium aluminum garnet crystals at λ = 2.94 µm, Sov. J. Quantum Electron. 4(8), 1039–1040 (1975)CrossRefADSGoogle Scholar
  451. 451.
    V.I. Zhekov, V. A. Lobachev, T.M. Murina, A.M. Prokhorov: Efficient cross-relaxation laser emitting at λ = 2.94 µm, Sov. J. Quantum Electron. 13, 1235–1237 (1983)CrossRefADSGoogle Scholar
  452. 452.
    E. V. Zharikov, V. V. Osiko, A. M. Prokhorov, I. A. Shcherbakov: Crystals of rare-earth gallium garnets with chromium as active media for solid-state lasers, Inorg. Mat. 48, 81–94 (1984)Google Scholar
  453. 453.
    P. F. Moulton, J. G. Manni, G. A. Rines: Spectroscopic and laser characteristics of Er,Cr:YSGG, IEEE J. Quantum Electron. 24, 960–973 (1988)ADSCrossRefGoogle Scholar
  454. 454.
    A.M. Prokhorov, A.A. Kaminskii, V.V. Osiko, M.I. Timoshechkin, E.V. Zharikov, T.I. Butaeva, S.E. Sarkisov, A. G. Petrosyan, V.A. Fedorov: Investigations of the 3 µm stimulated emission from Er3+ ions in aluminium garnets at room temperature, Phys. Stat. Sol. (a) 40, K69–K77 (1977)CrossRefADSGoogle Scholar
  455. 455.
    G. J. Kintz, R. E. Allen, L. Esterowitz: Diode-pumped 2.8-µm laser emission from Er3+:YLF at room temperature, Appl. Phys. Lett. 50, 1553 (1987)ADSCrossRefGoogle Scholar
  456. 456.
    S.A. Pollack, D. Chang, N.L. Moise: Continuous wave and Q-switched in-frared erbium laser, Appl. Phys. Lett. 49, 1578–1580 (1986)ADSCrossRefGoogle Scholar
  457. 457.
    F. Auzel, S. Hubert, D. Meichenin: Multifrequency room-temperature continuous diode and Ar-laser-pumped Er3+ laser emission between 2.66 and 2.85 µm, Appl. Phys. Lett. 54, 681 (1989)ADSCrossRefGoogle Scholar
  458. 458.
    A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, S.E. Sarkisov: Spectroscopic properties and 3 µm stimulated emission of Er3+ ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 garnet crystal systems, Phys. Stat. Sol. (a) 71, 291 (1982)CrossRefADSGoogle Scholar
  459. 459.
    S. Hubert, D. Meichenin, B.W. Zhou, F. Auzel: Emission properties, oscillator strength and laser parameters of Er3+ in LiYF4 at 2.7 µm, J. Lumin. 50, 7 (1991)CrossRefGoogle Scholar
  460. 460.
    B. J. Dinerman, P. F. Moulton: 3-µm CW laser operations in erbium-doped YSGG, GGG, and YAG, Opt. Lett. 19, 1143 (1994)ADSGoogle Scholar
  461. 461.
    H. Voss, F. Massmann: Diode-pumped Q-switched erbium lasers with short pulse duration, OSA Trends Opt. Photonics Adv. Solid-State Lasers 10, 217–221, C. R. Pollock, W.R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)Google Scholar
  462. 462.
    R. Waarts, D. Nam, S.H. Sanders, J. Harrison, B. J. Dinerman: Two dimensional Er:YSGG microlaser array pumped with a monolithic two-dimensional laser diode array, Opt. Lett. 19, 1738 (1994)ADSCrossRefGoogle Scholar
  463. 463.
    H. J. Eichler, J. Findeisen, B. Liu, A. A. Kaminskii, A. V. Butachin, P. Peuser: Highly efficient diode-pumped 3-µm Er3+:BaY2F8 laser, IEEE J. Sel. Topics Quantum Electron. 3, 90 (1997)CrossRefGoogle Scholar
  464. 464.
    R.H. Page, R.A. Bartels, R. J. Beach, S.B. Sutton, L.H. Furu, J.E. LaSala: 1W composite-slab Er:YAG laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 10, 214–216, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)Google Scholar
  465. 465.
    D. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields: Diode pumped 1W continuous-wave Er:YAG 3 µm laser, Opt. Lett. 24, N6 (1999)Google Scholar
  466. 466.
    J. F. Pinto, G. F. Rosenblatt, L. Esterowitz: Continuous-wave laser action in Er3+:YLF at 3.41 µm, Electron. Lett. 30, 1596 (1994)CrossRefGoogle Scholar
  467. 467.
    S.R. Bowman, S.K. Searles, N.W. Jenkins, S.B. Qadri, E.F. Skelton, J. Ganem: Diode pumped room temperature mid-infrared erbium laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 154–156 (Opt. Soc. Am., Washington, DC 2001)Google Scholar
  468. 468.
    M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, L.I. Isaenko: Room-temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 µm and KPb2Cl5:Dy3+ laser action at 2.43 µm, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 441–449, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 1999)Google Scholar
  469. 469.
    A. Dergachev, P. Moulton: Tunable CW Er:YLF diode-pumped laser, in Advanced Solid-State Photonics, OSA Technical Digest, 5-7 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Irina T. Sorokina
    • 1
  1. 1.Institut für PhotonikTechnische Universität WienViennaAustria

Personalised recommendations