Simulating Counter Automata by P Systems with Symport/Antiport

  • Pierluigi Frisco
  • Hendrik Jan Hoogeboom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2597)


The complexity, expressed in number of membranes and weight of rules, of Psystems with symport/antiport generating recursively enumerable sets is reduced if counter automata instead of matrix grammars are simulated. We consider both subsets of N obtained by counting objects in a designated membrane, and string languages obtained by following the traces of a designated object.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BibP.
    Bibliography of P Systems, at: The P Systems Web Page, C. Zandron (Ed.),
  2. CV02.
    E. Csuhaj-Varjú, G. Vaszil. PAutomata, in [PZ02], pages 177–192.Google Scholar
  3. FO02.
    R. Freund, M. Oswald. PSystems with Activated/Prohibited Membrane Channels, this volume.Google Scholar
  4. FP01.
    R. Freund, Gh. Păun. On the Number of Non-terminals in Graph-controlled, Programmed, and Matrix Grammars, in [MR01], pages 214–225.Google Scholar
  5. Ho02.
    H. J. Hoogeboom. Carriers and Counters; Psystems with Carriers vs. (Blind) Counter Automata, in: M. Ito, M. Toyama (eds.) Developments in Language Theory 2002, Preproceedings, 2002, pages 255–268. Updated paper to appear in LNCS.Google Scholar
  6. HU79.
    J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.Google Scholar
  7. I+02.
    M. Ionescu, C. Martín-Vide, A. Păun, Gh. Păun. Membrane Systems with Symport/Antiport: (Unexpected) Universality Results, in: M. Hagiya, A. Ohuchi (eds.) Preliminary Proceedings 8th International Meeting on DNA Based Computers, 2002, pages 151–160.Google Scholar
  8. MR01.
    M. Margenstern, Y. Rogozhin (eds.) Procedings Universal Computational Models, Chişinău, Lecture Notes in Computer Science, Volume 2055, Springer Verlag, 2001.Google Scholar
  9. MP01.
    C. Martín-Vide, Gh. Păun. Computing with Membranes (PSystems): Universality Results, in [MR01], pages 214–225.Google Scholar
  10. M+02a.
    C. Martín-Vide, A. Păun, Gh. Păun. On the Power of P Systems with Symport Rules. Journal of Universal Computer Science 8 (2002), pages 317–331.Google Scholar
  11. M+02b.
    C. Martín-Vide, A. Păun, Gh. Păun, G. Rozenberg. Membrane Systems with Coupled Transport: Universality and Normal Forms. Fundamenta Informaticae 49 (2002), pages 1–15.MathSciNetMATHGoogle Scholar
  12. Mi61.
    M. L. Minsky. Recursive Unsolvability of Post’s Problem of “Tag▸ and Other Topics in Theory of Turing Machines. Annals of Mathematics, 74 (1961), pages 437–455.MathSciNetMATHCrossRefGoogle Scholar
  13. Pă02a.
    A. Păun. Membrane Systems with Symport/Antiport. Universality Results, in [PZ02], pages 333–343.Google Scholar
  14. PP02.
    A. Păun, Gh. ăun. The Power of Communication: P Systems with Symport/ Antiport. New Generation Computing, 20 (2002), pages 295–305.MATHCrossRefGoogle Scholar
  15. Pă00a.
    Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences, 61 (2000), pages 108–143.MathSciNetMATHCrossRefGoogle Scholar
  16. Pă00b.
    Gh. Păun. Computing with Membranes (PSystems): Twenty Six Research Topics, CDMTCS TR 119, Univ. of Auckland, 2000.
  17. Pă02b.
    Gh. Păun. Membrane Computing. An Introduction. Natural Computing Series, Springer Verlag, 2002.Google Scholar
  18. PR02.
    Gh. Păun, G. Rozenberg. A Guide to Membrane Computing. Theoretical Computer Science, 287 (2002), pages 73–100.MathSciNetMATHCrossRefGoogle Scholar
  19. PZ02.
    Gh Păun, C. Zandron (eds.) Pre-proceedings of the Second Workshop on Membrane Computing, Curtea de Argeş Romania, Molconet Publication 1, 2002. Updated papers to appear in LNCS, this volume.Google Scholar
  20. So02.
    P. Sosík, P Systems Versus Register Machines: Two Universality Proofs, in [PZ02], pages 371–382.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pierluigi Frisco
    • 1
  • Hendrik Jan Hoogeboom
    • 1
  1. 1.Institute for Advanced Computer ScienceUniversiteit LeidenThe Netherlands

Personalised recommendations