Molecular Biology of Bacteria and Its Relevance for P Systems

  • Ioan I. Ardelean
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2597)

Abstract

We recall several elements of molecular biology of bacteria, also discussing their (possible) relevance for the membrane computing area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Aldridge, K. Huges, Regulation of flagellar assembly, Curr. Opinion Microbiol., 2 (2002), 160–165.CrossRefGoogle Scholar
  2. 2.
    G. Alford, Membrane systems with heat control, Pre-proc. Workshop on Membrane Computing, Curtea de Argeş, 2002 (G. Păun, C. Zandron, eds.), 7–15.Google Scholar
  3. 3.
    I.I. Ardelean, The relevance of cell membrane for P systems. General aspects, Fundamenta Informaticae, 49, 1–3 (2002), 35–43.MathSciNetMATHGoogle Scholar
  4. 4.
    J. Bailey, Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities, Biotechnol. Prog., 14 (1998), 8–20.CrossRefGoogle Scholar
  5. 5.
    B.L. Bassler, How bacteria talk each other: regulation of gene expression by quorum sensing, Curr. Opinion Microbiol., 2 (1999), 582–587.CrossRefGoogle Scholar
  6. 6.
    M.G. Boersema, I.P. Solyanikova, W.J. Van Berkes, J. Vervoort, L.A. Golovleva, I.M. Rietjens, 19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols, J. Ind. Microbiol. Biotechnol., 26 (2001), 22–34.CrossRefGoogle Scholar
  7. 7.
    I.R. Booth, Bacterial transport: energetics and mechanisms, in Bacterial Energy Transduction (C. Anthony, ed.), Academic Press, London, 1988, 377–428.Google Scholar
  8. 8.
    D. Bray, Protein molecules as computational elements in living cells, Nature, 376 (1995), 307–312.CrossRefGoogle Scholar
  9. 9.
    R. Bruckner, F. Titgemeyer, Carbon catabolite repression in bacteria: choice of the carbonsource and autoregulatory limitation of sugar utilisation, FEMS Microbiol. Lett., 209 (2002), 141–148.CrossRefGoogle Scholar
  10. 10.
    F.J. Bruggeman, W.C. van Heeswijk, F.C. Boogerd, H.V. Westerhoff, Macromolecular intelligence in microorganisms, Biol. Chem., 9–10 (2000), 965–972.CrossRefGoogle Scholar
  11. 11.
    M. Conrad, Information processing in molecular systems, Curr. Modern. Biol., 5, 1 (1972), 1–14.Google Scholar
  12. 12.
    D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P. Greenberg, The involvement of cell to cell signals in the development of a bacterial biofilm, Science, 280 (1998), 295–299.CrossRefGoogle Scholar
  13. 13.
    F. Devaux, P. Marc, C. Jacq, Transcriptomes, transcription activators and microarrays, FEBS Lett., 498 (2001), 140–144.CrossRefGoogle Scholar
  14. 14.
    R. Freund, Energy-controlled P systems, Pre-proc. Workshop on Membrane Computing, Curtea de Argeş’ 2002 (G. Păun, C. Zandron, eds.), 221–237.Google Scholar
  15. 15.
    R. Freund, M. Oswald, GP systems with forbidding context, Fundamenta Informaticae, 49, 1–3 (2002), 81–102.MathSciNetMATHGoogle Scholar
  16. 16.
    P. Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with symport/antiport, Pre-proc. Workshop on Membrane Computing, Curtea de Argeş,, 2002 (G. Păun, C. Zandron, eds.), 237–249.Google Scholar
  17. 17.
    P. Frisco, S. Ji, Towards a hierarchy of info-energy P systems, Pre-proc. Workshop on Membrane Computing, Curtea de Argeş,, 2002 (G. Păun, C. Zandron, eds.), 265–283.Google Scholar
  18. 18.
    T. Gaasterland, M. Oprea, Whole-genome analysis: annotations and updates, Curr. Opinion Str. Biology, 11 (2001), 377–381.CrossRefGoogle Scholar
  19. 19.
    N. Goodman, Biological data becomes computer literate: new advances in bioinformatics, Curr. Opinion Biotechnol., 13 (2002), 68–71.CrossRefGoogle Scholar
  20. 20.
    M.G. Gunnevijk, P.T. van den Bogaard, L.M. Venho., E.H. Heuberger, W.M. de Vos, M. Kleerbezem, O.P. Kuipers, B. Poolman, Hierarchical control versus autoregulation of carbohydrate utilisation in bacteria, J. Mol. Microbiol. Biotechnol., 3 (2001), 401–413.Google Scholar
  21. 21.
    L.H. Hartwell, J.L. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology, Nature, 402 (1999), C47–C52.CrossRefGoogle Scholar
  22. 22.
    K.R. Hess, W. Zhang, K.A. Baggerly, D.N. Stivers, K.R. Coombes, W. Zhang, Microarrays: handling the deluge of data and extracting reliable information, Trends Biotechnol., 19 (2001), 463–468.CrossRefGoogle Scholar
  23. 23.
    P. James, On genoms and proteoms, Biochem. Biophys. Res. Commun., 231, 1 (1997), 1–6.CrossRefGoogle Scholar
  24. 24.
    H. Jong, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput. Biol., 9, 1 (2002), 67–103.CrossRefGoogle Scholar
  25. 25.
    H. Jung, Towards the molecular mechanism of Na/solute symport in prokaryotes, Biochem. Biophys. Acta, 1505 (2001), 131–143.CrossRefGoogle Scholar
  26. 26.
    R.R. Kampfner, Digital and biological computing in organizations, BioSystems, 64 (2002), 179–188.CrossRefGoogle Scholar
  27. 27.
    D.J. Kelly. G.H. Thomas, The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea, FEMS Microbiol. Rev., 25 (2001), 404–424.CrossRefGoogle Scholar
  28. 28.
    N. Levina, S. Totemeyer, N.R. Stokes, P. Louis, M.A. Jones, I.B. Booth, Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity, The EMBO J., 18 (1999), 1730–1737.CrossRefGoogle Scholar
  29. 29.
    P.C. Marijuan, Bioinformation: untangling the networks of life, BioSystems, 64 (2002), 111–118.CrossRefGoogle Scholar
  30. 30.
    C. Martin-Vide, A. Păun, G. Păun, G. Rozenberg, Membrane systems with coupled transport: universality and normal forms, Fundamenta Informaticae, 49, 1–3 (2002), 1–15.MathSciNetMATHGoogle Scholar
  31. 31.
    H. McAdams, A. Arkin, Simulation of prokaryotic genetic circuits, Annu. Rev. Biophys. Biomol. Struct., 27 (1998), 199–224.CrossRefGoogle Scholar
  32. 32.
    F. Meng, B.J. Cargile, L.M. Miller, A.J. Forbes, J.R. Johnson, N.L Kelleher, Informatics and multiplexing of intact protein identification in bacteria and the archaea, Nat. Biotechnol., 19 (2001), 952–957.CrossRefGoogle Scholar
  33. 33.
    D.G. Nicholls, S.J. Ferguson, Bioenergetics, 2nd ed., Academic Press, London, 1992.Google Scholar
  34. 34.
    T.Y. Nishida, Simulation of photosynthesis by a K-subset transforming systems with membranes, Fundamenta Informaticae, 49, 1–3 (2002), 249–259.MathSciNetMATHGoogle Scholar
  35. 35.
    T. Nougueira, M. Springer, Post-transcriptional control by global regulators of gene expression in bacteria, Curr. Opinion Microbiol., 3 (2000), 154–158.CrossRefGoogle Scholar
  36. 36.
    C. Ouzounis, Bioinformatics and the theoretical foundations of molecular biology, Bioinformatics, 18, 3 (2002), 377–378.CrossRefGoogle Scholar
  37. 37.
    E. Padan, M. Venturi, Y. Gercham, N. Dover, Na/H antiporters, Biochem. Biophys. Acta, 1505 (2001), 144–157.CrossRefGoogle Scholar
  38. 38.
    A. Păun, Membrane systems with symport/antiport: universality results, Pre-proc. Workshop on Membrane Computing, Curtea de Argeş, 2002 (G. Păun, C. Zandron, eds.), 333–345.Google Scholar
  39. 39.
    A. Păun, G. Păun, The power of communication: P systems with symport/antiport, New Generation Computing, 20, 3 (2002), 295–306.MATHCrossRefGoogle Scholar
  40. 40.
    A. Păun, G. Păun, A. Rodriguez-Paton, Further remarks on P systems with symport rules, Annals of Univ. Al.I. Cuza, Iassy, Series Mathematics-Informatics, 10 (2001), 3–18.MATHGoogle Scholar
  41. 41.
    G. Păun, P systems with active membranes: Attacking NP-complete problems, J. Automata, Languages, and Combinatorics, 6, 1 (2001), 75–90.MATHGoogle Scholar
  42. 42.
    G. Păun, From cells to computers: computing with membranes (P systems), BioSystems, 59 (2001), 139–158.CrossRefGoogle Scholar
  43. 43.
    G. Păun, Membrane computing. An Introduction, Springer, Berlin, 2002.Google Scholar
  44. 44.
    G. Păun, Y. Suzuki, H. Tanaka, P systems with energy accounting, Int. J. Computer Math., 78, 3 (2001), 343–364.MATHCrossRefGoogle Scholar
  45. 45.
    T.J. Phelps, A.V. Palumbo, A.S. Beliaev, Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints, Curr. Opinion Biotechnol., 13 (2002), 20–24.CrossRefGoogle Scholar
  46. 46.
    L.M. Raamsdonk, B. Teusink, D. Broadhurst, N. Zhang, A. Hayes, M.C. Walsh, J.A. Berden, K.M. Brindle, D.B. Kell, J.J. Rowland, H.V. Westerhoff, K. van Dam, S.G. Oliver, A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations, Nat. Biotechnol., 19 (2001), 45–50.CrossRefGoogle Scholar
  47. 47.
    A.J. Roe, D. Mc Laggan, C.P. O’Bryne, I.R. Booth, Rapid inactivation of the Escherichia coli Kdp K uptake system by high potassium concentration, Mol. Microbiol., 35 (2000), 1235–1243.CrossRefGoogle Scholar
  48. 48.
    M.H. Saier, Genome archeology leading to the characterization and classification of transport proteins, Curr. Opinion Microbiol., 2 (1999), 555–561.CrossRefGoogle Scholar
  49. 49.
    S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, 175 (1972), 720–731.CrossRefGoogle Scholar
  50. 50.
    S.J. Singer, The molecular organization of membranes, Ann. Rev. Biochem., 43 (1974), 805–835.CrossRefGoogle Scholar
  51. 51.
    S.J. Spengler, Bioinformatics in the information age, Science, 287 (2000), 1221–1223.CrossRefGoogle Scholar
  52. 52.
    D.E. Stafford, G. Stephanopoulos, Metabolic engineering as an integrating platform for strain development, Curr. Opinion Microb., 4 (2001), 336–240.CrossRefGoogle Scholar
  53. 53.
    G.D. Stormo, K. Tan, Mining genome data base to identify and understand new gene regulatory systems, Curr. Opinion Microb., 5 (2002), 149–153.CrossRefGoogle Scholar
  54. 54.
    J. Stulke, W. Hillen, Carbon catabolite repression in bacteria, Curr. Opinion Microb., 2 (1999), 195–201.CrossRefGoogle Scholar
  55. 55.
    S.E. Szedlacsek, Time dependent or steady-state control of metabolic systems, in Tehcnological and Medical Implications of Metabolic Control Analysis (A.J. Cornish-Bowden, M.L. Cardenal, eds.), Kluwer Academic Publishers, 2000, 251–258.Google Scholar
  56. 56.
    D. Thieffry, R. Thomas, Quantitative analysis of gene networks, Pac. Symp. Biocomputing, 1998, 77–88.Google Scholar
  57. 57.
    J. Varner, D. Ramkrishna, Mathematical models of metabolic pathways, Curr. Opinion Biotechnol., 10 (1999), 146–150.CrossRefGoogle Scholar
  58. 58.
    M.P. Washburn, J.R. Yates, Analysis of the microbial proteome, Curr. Opinion Microbiol., 3 (2000), 292–297.CrossRefGoogle Scholar
  59. 59.
    R.A. van Bogelen, K.D. Greis, R.M. Blumenthal, T. Tani, R.G. Matthews, Mapping regulatory networks in microbial cells, Trend. Microbiol., 7, 8 (1999), 320–328.CrossRefGoogle Scholar
  60. 60.
    O. Wolkenhauer, Mathematical modelling in the post-genome era: understanding genome expression and regulation: a system theoretic approach, BioSystems, 65 (2002), 1–18.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ioan I. Ardelean
    • 1
  1. 1.Centre of MicrobiologyInstitute of Biology of the Romanian AcademyBucharestRomania

Personalised recommendations