Uniformly Convergent High-Order Schemes for a 2D Elliptic Reaction-Diffusion Problem with Anisotropic Coefficients

  • Iliya Brayanov
  • Ivanka Dimitrova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


Two dimensional elliptic reaction - diffusion problem with highly anisotropic coefficients is considered. The second order derivative with respect to one of the independent variables is multiplied by a small parameter ∈. In this work, we construct and study finite difference schemes, defined on a priori Shishkin meshes, uniformly convergent with respect to the small parameter ∈, which have order three except for a logarithmic factor. Numerical experiments confirming the theoretical results are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastian, P., Wittum, G.: On robust and adaptive multi-grid methods. In: Hemker, P.W. et. al (eds.): Multigrid Methods. Proceed. of the 4-th European Multigrid Conference, Basel (1994) 1–19.Google Scholar
  2. 2.
    Clavero, C., Gracia, J.L., Lisbona, F.: High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type. Numerical Algorithms 22, 2 (1999), 73–97.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gartland, E.C. Jr.: Compact high-order finite differences for interface problems in one dimension. IMA J. of Num. Anal. 9 (1989) 243–260.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gracia J.L., Lisbona F., Clavero C.: High-order ∈-uniform methods for singularly perturbed reaction-diffusion problems. In: L. Vulkov, Waśniewski, J., Yalamov, P. (eds.): Numerical Analysis and its Applications. Lecture notes in Comp. Sci., Vol. 1988. Springer-Verlag (2001) 350–359.CrossRefGoogle Scholar
  5. 5.
    Han, H., Kellogg, R.B.: Differentiability properties of solutions of the equations-∈2Δu + ru = f(x, y) in a square. SIAM J. Math. Anal. 21 (1990) 394–408.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kopteva, N.V.: Uniform difference methods for some singularly perturbed problems on condensed meshes. Phd Thesis, M.: MGU, 1996.Google Scholar
  7. 7.
    Li, J.: Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem. Computers Math. Applic., Vol. 33, 10 (1997) 11–22.zbMATHCrossRefGoogle Scholar
  8. 8.
    Miler, J.J.H., O'Riordan, E., Shishkin, G.I.: Fitted numerical methods for singularly perturbed problems. World Scientific, Singapore (1996)Google Scholar
  9. 9.
    Roos, H.-G.: A note on the conditioning of upwind schemes on Shishkin meshes. IMA J. of Num. Anal., Vol. 16 (1996) 529–538.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ross, H.G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations. Springer Verlag (1996)Google Scholar
  11. 11.
    Spotz, W.F.: High-order compact finite difference schemes for computational mechanics. Ph. D. Thesis, University of Texas at Austin (1995)Google Scholar
  12. 12.
    Vasileva, A., Butusov, V.: Asymptotic methods in singular perturbation theory. Vyshaya Shkola, Moscow (1996) (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Iliya Brayanov
    • 1
  • Ivanka Dimitrova
    • 1
  1. 1.Department of MathematicsUniversity of RousseRousseBulgaria

Personalised recommendations