Multiscale Modeling of Alternative Splicing Regulation

  • Damien Eveillard
  • Delphine Ropers
  • Hidde de Jong
  • Christiane Branlant
  • Alexander Bockmayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2602)


Alternative plicing is a key process in post-transcriptional regulation, by which several kind of mature RNA can be obtained from the ame premessenger RNA. Using a constraint programming approach, we model the alternative plicing regulation at different scales (single site vs. multiple sites), thus exploiting different types of available experimental data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1 ]
    Bernard, O., and Gouzé J.-L.: Transient behavior of biological models a a tool of qualitative validation-Application to the Droop model and to a N-P-Z model. J.Biol.Syst, 4(3)(1996)303–314 80CrossRefGoogle Scholar
  2. [2 ]
    Bockmayr, A., Courtois, A.: Modeling biological items in hybrid concurrent constraint programming (Abstract). In 2nd Int.Conf.System Biology,ICSB’01, Pasadena,CA (2001) 76, 82Google Scholar
  3. [3 ]
    Bockmayr, A., Courtoi, A.: Using hybrid concurrent constraint programming to model dynamic biological y tem. In 18th International Conference on Logic Programming,ICLP’02, Copenhagen Springer, LNCS 2401 (2002) 76, 82Google Scholar
  4. [4 ]
    Caputi, M.A., Mayeda, M.A., Krainer, A.R.,and Zahler, A.M.:hnRNP A/B protein are required for inhibition of HIV-1 pre-mRNA plicing. EMBO 18(14) (1999) 4060–7 77Google Scholar
  5. [5 ]
    Dautry, F., Weill, D.:Kinetic analy is of mRNA metabolism.In Interdisciplinary School on imaging,modelling and manipulating transcriptional regulatory networks, Ambleteuse (2002) 20/92 82Google Scholar
  6. [6 ]
    Del Gatto-Konczak, F., Olive, M., Gesnel, M.C., and Breathnach, R.:hnRNP A1 recruited to an exon in vivo can function as an exon splicing ilencer. Mol. Cell.Biol.19 (1)(1999)251–60 77Google Scholar
  7. [7 ]
    Graveley, B.R., Hertel, K.J., Maniatis, T.:A systematic analy is of the factors that determine the trength of pre-mRNA plicing enhancer. EMBO 17(22) (1998)6747–6756Google Scholar
  8. [8 ]
    Graveley, B.R.:Sorting out the complexity of SR protein functions.RNA 6 (2000) 1197–1211 75Google Scholar
  9. [9 ]
    Gupta, V., Jagadeesan, R., Saraswat V.:Computing with continuous change. Science of computer programming 30(1–2) (1998) 3–49 76,81MATHCrossRefMathSciNetGoogle Scholar
  10. [10 ]
    Gupta, V., Jagadeesan, R., Saraswat V., Bobrow, D.G.:Programming in hybrid constraint language. In Hybrid Systems II 226–251. Springer, LNCS 999 (1995) 76, 81, 82Google Scholar
  11. [11 ]
    Hammond, B.J.:Quantitative Study of the Control of HIV-1 Gene Expression. J.Theor.Biol.163 (1993)199–221 86Google Scholar
  12. [12 ]
    Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.:From molecular to modular cell biology.Nature 402 (1999) C47–C52 82CrossRefGoogle Scholar
  13. [13 ]
    Heinrich, R., Schuster, S.:The regulation of cellular systems. Int’l Thomson Publishing, New York (1996)79MATHGoogle Scholar
  14. [14 ]
    Moore, M.J., Query, C.C., Sharp, P.A.:Splicing of precursors to mRNA by the spliceosome.In The RNA World, Cold Spring Harbor Laboratory Press (1993) 303–357 76Google Scholar
  15. [15 ]
    O’Reilly, M., McNally, M.T., Beemon, K.L.:Two strong 5’ plice ites and competing, suboptimal 3’splice ites involved in alternative plicing of human immunodeficiency virus type 1 RNA.Virology 213(2) (1995) 373–85 77CrossRefGoogle Scholar
  16. [16 ]
    Palsson, B.:The challenges of in silico biology. Nature Biotechnology 18 (2000) 1147–1150 76Google Scholar
  17. [17 ]
    Purcell, D.F., Martin, M.A.:Alternative plicing of human immunodeficiency virus type 1 mRNA modulate viral protein expression, replication, and infectivity. J.Virol.67(11) (1993) 6365–6378 77Google Scholar
  18. [18 ]
    Ropers, D., Ayadi, L., Jacquenet, S., Méreau, A., Thomas, D., Mougin, A., Bilodeau, P., Stoltzfus, C.M., Gattoni, R., Stévenin, J., Branlant, C.:A complex regulation of the central A3 to A5 acceptor site in HIV-1 RNA. In Eukaryotic mRNA Processing (2001) 77Google Scholar
  19. [19 ]
    Saraswat, V.A.:Concurrent constraint programming. ACM Doctoral Dissertation Award. MIT Press (1993)81Google Scholar
  20. [20 ]
    Saraswat, V.A., Jagadeesan, R., Gupta, V.:Foundation of timed concurrent constraint programming. In 9th Symp.Logic in Computer Science,LICS’ 94, Paris IEEE (1994) 71–80 81Google Scholar
  21. [21 ]
    Saraswat, V.A., Jagadeesan, R., Gupta, V.:Timed default concurrent constraint programming. Journal of Symbolic Computation 22(5/6) (1996) 475–520 81MATHCrossRefMathSciNetGoogle Scholar
  22. [22 ]
    Segel, L.A.:Modelling dynamic phenomena in molecular and cellular biology. Cambridge University Press (1984)78Google Scholar
  23. [23 ]
    Si, Z.H., Amendt, B.A., Stoltzfus, C.M.:Splicing efficiency of human immunodeficiency virus type 1 tat RNA is determined by both a uboptimal 3’ splice site and a 10 nucleotide exon splicing ilencer element located within tat exon 2. N.A.R.25(4) (1997) 861–867CrossRefGoogle Scholar
  24. [24 ]
    Si, Z.H., Rauch, D., Stoltzfus, C.M.:The exon splicing silencer in human immunodeficiency virus type 1 Tat exon 3 i bipartite and acts early in spliceosomeassembly. Mol.Cell.Biol 18(9) (1998) 5404–13Google Scholar
  25. [25 ]
    Staffa, A., Cochrane, A.:The tat/rev intron of human immunodeficiency virus type 1 i ineffciently spliced because of suboptimal signals in the 3’ splice site. J. Virol.68(5) (1994) 3071–9Google Scholar
  26. [26 ]
    Tang, H., Kuhen, K.L., Wong-Staal, F.:Lentivirus replication and regulation.Annu.Rev.Genet 33 (1999)133–170 76CrossRefGoogle Scholar
  27. [27 ]
    Voit, E.:Computational Analysis of Biochemical Systems. Cambridge University Press (2000)79Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Damien Eveillard
    • 1
  • Delphine Ropers
    • 2
  • Hidde de Jong
    • 3
  • Christiane Branlant
    • 2
  • Alexander Bockmayr
    • 1
  1. 1.LORIAUniver itéHenriPoincaréVandæuvre-lès-NancyFrance
  2. 2.Laboratoire de Maturation de ARN et Enzymologie MoléculaireVandœuvre-lès-NancyFrance
  3. 3.INRIA Rhône-Alpe ,Helix ProjectMontbonnotFrance

Personalised recommendations