Advertisement

Matching: A Well-Solved Class of Integer Linear Programs

  • Jack Edmonds
  • Ellis L. Johnson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2570)

Abstract

A main purpose of this work is to give a good algorithm for a certain well-described class of integer linear programming problems, called matching problems (or the matching problem). Methods developed for simple matching [2]

Keywords

Integer Program Integer Linear Program Match Problem Optimum Match Cost Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berge, C., Théorie des graphes et ses applications, Dunod, Paris, 1958.Google Scholar
  2. 2.
    Edmonds, J., Paths, trees, and flowers, Canad. J. Math. 17 (1965), 449–467.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Edmonds, J., Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards 69B (1965), 125–130.MathSciNetGoogle Scholar
  4. 4.
    Edmonds, J., An introduction to matching, preprinted lectures, Univ. of Mich. Summer Engineering Conf. 1967.Google Scholar
  5. 5.
    Johnson, E.L., Programming in networks and graphs, Operation Research Center Report 65-1, Etchavary Hall, Univ. of Calif., Berkeley.Google Scholar
  6. 6.
    Tutte, W.T., The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107–111.CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Tutte, W.T., The factors of graphs, Canad. J. Math. 4 (1952), 314–328.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Witzgall, C. and Zahn, C.T. Jr., Modification of Edmonds’ matching algorithm, J. Res. Nat. Bur. Standards 69B (1965), 91–98.MathSciNetGoogle Scholar
  9. 9.
    White, L.J., A parametric study of matchings, Ph.D. Thesis, Dept. of Elec. Engineering, Univ. of Mich., 1967.Google Scholar
  10. 10.
    Balinski, M., A labelling method for matching, Combinatorics Conference, Univ. of North Carolina, 1967.Google Scholar
  11. 11.
    Balinski, M., Establishing the matching poloytope, preprint, City Univ. of New York, 1969.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jack Edmonds
    • 1
  • Ellis L. Johnson
    • 2
  1. 1.National Bureau of StandardsWashington, D.C.USA
  2. 2.I.B.M. Research CenterYorktown HeightsUSA

Personalised recommendations