Topological Proteomics, Toponomics, MELK-Technology

  • Walter Schubert
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 83)


MELK is an ultrasensitive topological proteomics technology analysing proteins on the single cell level (Multi-Epitope-Ligand-‘Kartographie’). It can trace out large scale protein patterns with subcellular resolution, mapping the topological position of many proteins simultaneously in a cell. Thereby, it addresses higher level order in a proteome, referred to as the toponome, coding cell functions by topologically and timely determined webs of interacting proteins. The resulting cellular protein maps provide new structures in the proteome: single combinatorial protein patterns (s-CPP), and combinatorial protein pattern motifs (CPP-motifs), bound to superior units. They are images of functional protein networks, which are specific signatures of tissues, cell types, cell states and diseases. The technology unravels hierarchies of proteins related to particular cell functions or dysfunctions, thus identifying and prioritising key proteins within cell and tissue protein networks. Interlocking MELK with the drug screening machinery provides new clues related to the selection of target proteins, and functionally relevant hits and drug leads. The present chapter summarizes the steps that have contributed to the establishment of the technology.


MELK Whole cell fingerprinting Topological proteomics Toponomics TOPONOME Functional proteomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schubert W (2000) Automated determining and measuring device and method. US Patent 6 150 173Google Scholar
  2. 2.
    Schubert W (1992) Antigenic determinants of T lymphocyte α/β receptor and other leukocyte surface proteins as differential markers of skeletal muscle regeneration: detection of spatially and timely restricted patterns by MAM microscopy. Eur J Cell Biol 58:395Google Scholar
  3. 3.
    Schubert W, Kontozis L, Sticker G, Schwan H, Haraldsen G, Jerusalem F (1988) Immuno-fluorescent evidence for presence of interleukin-1 in normal and diseased human skeletal muscle. Muscle Nerve 11:890CrossRefGoogle Scholar
  4. 4.
    Zimmermann K, Herget T, Salbaum J, Schubert W, Hilbich C, Cramer M, Masters CL, Multhaup G, Kang J, Lemaire HG, Beyreuther K, Starzinski-Powitz A (1988) Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J 7:367Google Scholar
  5. 5.
    Schubert W, Zimmermann K, Cramer M, Starzinski-Powitz A ( 1989) Lymphocyte antigen Leu19 as a molecular marker of regeneration in human skeletal muscle. Proc Natl Acad Sci USA 86:307CrossRefGoogle Scholar
  6. 6.
    Schubert W, Prior R, Weidemann A, Dircksen H, Multhaup G, Masters CL, Beyreuther K (1991) Localization of Alzheimer βA4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res 563:184CrossRefGoogle Scholar
  7. 7.
    Schubert W (1991) Triple immunofluorescence confocal laser scanning microscopy: spatial correlation of novel cellular differentiation markers in human muscle biopsies. Eur J Cell Biol 55:272Google Scholar
  8. 8.
    Schubert W, Masters CL, Beyreuther K (1993) APP+ T lymphocytes selectively sorted to endomysial tubes in polymyositis displace NCAM-expressing muscle fibers. Eur J Cell Biol62:333Google Scholar
  9. 9.
    Schubert W, Schwan H (1995) Detection by 4-parameter microscopic imaging and increase of rare mononuclear blood leukocyte types expressing the FcγRIII receptor for immunoglobulin G in human sporadic amyotrophic lateral sclerosis (ALS). Neurosci Lett 198:29CrossRefGoogle Scholar
  10. 10.
    Lendeckel U, Wex T, Ittenson A, Arndt M, Frank K, Maiboroda O, Schubert W, Ansorge S (1997) Rapid mitogen-induced aminopeptidase N surface expression in human T cells is dominated by mechanisms independent of de novo protein biosynthesis. Immunobiology 197:55Google Scholar
  11. 11.
    Schubert W, Agha-Amiri K, Mayboroda O, Rethfeldt C (1997) Dipeptidyl peptidase IV (CD26) and Alzheimer amyloid protein precursor (APP) in polymyositis. Adv Exp Med Biol 421:273Google Scholar
  12. 12.
    Kuznetsov AV, Mayboroda O, Kunz D, Winkler K, Schubert W, Kunz WS (1998) Functional imaging of mitochondria in saponin-permeabilized mice skeletal muscle fibers. J Cell Biol 140:1091CrossRefGoogle Scholar
  13. 13.
    Vielhaber S, Kunz D, Winkler K, Wiedemann RF, Kirches E, Feistner H, Heinze HJ, Elger E, Schubert W, Kunz S (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with amyotrophic lateral sclerosis. Brain 123:1339CrossRefGoogle Scholar
  14. 14.
    Haars R, Schneider A, Bode M, Schubert W (2000) Secretion and differential localization of the proteolytic cleavage products Aβ40 and Ab42 of the Alzheimer amyloid precursor protein in human fetal myogenic cells. Eur J Cell Biol 79:400CrossRefGoogle Scholar
  15. 15.
    Schubert W (2002) Polymositis, topological proteomics technology and paradigm for cell invasion dynamics. J Theoret Med 4:75CrossRefGoogle Scholar
  16. 16.
    Bischoff R (1994) The satellite cell and muscle regeneration. In: Engel AG, Francini-Armstrong C (eds) Myology. McGraw Hill, New York, p 97Google Scholar
  17. 17.
    De Angelis LD, Berghella L, Coletta M, Lattanzi L, Zanchi M, Gabriella M, Cusella-De Angelis, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to muscle growth and regeneration. J Cell Biol 147:869CrossRefGoogle Scholar
  18. 18.
    Schubert W, Friedenberger M, Haars R, Nattkemper T, Ritter H (2002) Automatic recognition of muscle invasive T lymphocytes expressing dipeptidyl-peptidase IV (CD26), and analysis of the associated cell surface phenotypes. J Theoret Med 4:67CrossRefGoogle Scholar
  19. 19.
    Nattkemper T, Ritter H, Schubert W (2001) A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections. IEEE Trans Inf Techn Biomed 5:138CrossRefGoogle Scholar
  20. 20.
    Nattkemper T, Ritter H, Schubert W (1999) Extracting patterns of lymphocyte fluorescence from digital microscope images. Intelligent Data Analysis in Medicine and Pharmacology. Proceedings of the annual symposium of the American Medical Informatics Association. Washington, IDAMAP, p 79Google Scholar
  21. 21.
    Nattkemper TW, Wersing H, Schubert W, Ritter H (2000) A neural network architecture for automatic segmentation of fluorescence micrographs. Proceedings of the European Symposium on Artificial Neural Networks. Bruges, ESANN, p 177Google Scholar
  22. 22.
    Nattkemper T, Wersing H, Schubert W, Ritter H (2000) Fluorescence micrograph segmentation by Gestalt-Based Feature Binding. Proceedings of the IEEE-INNS-ENNS International Joint Meeting Conference on Artificial Neural Networks. Como, IJCNNGoogle Scholar
  23. 23.
    Nattkemper TW, Wersing H, Ritter H, Schubert W (2000) Automatic evaluation of multiparameter fluorescence micrographs with neural network architecture. In: Valafar F (ed) Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. CSREA press, METMBS, Las Vegas, p 739Google Scholar
  24. 24.
    Hermann T, Nattkemper TW, Ritter H, Schubert W (2000) Sonification of multi-channel image data. In: Valafar F (ed) Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. CSREA press, METMBS, Las Vegas, p 745Google Scholar
  25. 25.
    Mardia KV, Wei Quian, Shah D, de Souza KMA (1997) An algorithm for dividing clusters fluorescent stained nuclei. IEEE Trans Pattern Anal Mach Intell 19:1035CrossRefGoogle Scholar
  26. 26.
    Dow AI, Shafer SA, Kirkwood JM, Mascari RA, Waggoner AS (1996) Automatic multiparameter fluorescence imaging for determining lymphocyte phenotype and activation status in melanoma tissue sections. Cytometry 25:71CrossRefGoogle Scholar
  27. 27.
    Hanahara K, Hiyane M (1990) A circle-detection algorithm simulating wave propagation. Mach Vision Appl 3:97Google Scholar
  28. 28.
    Galbraith W, Wagner MCE, Chao J, Abaza M, Ernst LA, Nederlof MA, Hartsock RJ, Taylor DL, Waggoner AS (1991) Imaging cytometry by multiparameter fluorescence. Cytometry 12:579CrossRefGoogle Scholar
  29. 29.
    Gerig G, Klein F (1986) Fast contour identification through efficient Hough transform and simplified interpretation strategy. Proc Int Conf Pattern Recognition 8:498Google Scholar
  30. 30.
    Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13:111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Walter Schubert
    • 1
    • 2
  1. 1.MelTec Ltd.MagdeburgGermany
  2. 2.Institute of Medical NeurobiologyOtto von Guericke-University of MagdeburgMagdeburgGermany

Personalised recommendations