A New 3-Color Criterion for Planar Graphs

Extended Abstract
  • Krzysztof Diks
  • Lukasz Kowalik
  • Maciej Kurowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2573)

Abstract

We present a new general 3-color criterion for planar graphs. Applying this criterion we characterize a broad class of 3-colorable planar graphs and provide a corresponding linear time 3-coloring algorithm. We also characterize fully infinite 3-colorable planar triangulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GJS.
    M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci., 1 (1976), pp. 237–267.MATHCrossRefMathSciNetGoogle Scholar
  2. Hea.
    P. J. Heawood, On the four-color map theorem, Quart. J. Pure Math. 29 (1898) 270–285MATHGoogle Scholar
  3. Ore.
    O. Ore, The Four-Color Problem, Academic Press, New York, Chapter 13 (1967).MATHGoogle Scholar
  4. Ste.
    R. Steinberg, The state of the three color problem [in:], Quo Vadis, Graph Theory? Annals of Discrete Mathematics, 55 (1993) 211–248MathSciNetCrossRefGoogle Scholar
  5. Kr1.
    H. Król, On a sufficient and necessary condition of 3-colorableness for the planar graphs. I, Prace Naukowe Inst. Mat. i Fiz. Teoret. P. Wr., Seria Studia i Materialy, No. 6 Grafy i hypergrafy, (1972) 37–40Google Scholar
  6. Kr2.
    H. Król, On a sufficient and necessary condition of 3-colorableness for the planar graphs. II, Prace Naukowe Inst. Mat. i Fiz. Teoret. P. Wr., Seria Studia i Materialy, No. 9 Grafy i hypergrafy, (1973) 49–54Google Scholar
  7. Mar.
    N. I. Martinov, 3-colorable planar graphs, Serdica, 3, (1977) 11–16MATHMathSciNetGoogle Scholar
  8. Chr.
    M. Chrobak, D. Eppstein, Planar orientations with low out-degree and compactions of adjacency matrices Theoretical Computer Science, 86, (1991) 243–266MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Krzysztof Diks
    • 1
  • Lukasz Kowalik
    • 1
  • Maciej Kurowski
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland

Personalised recommendations