Advertisement

The Complexity of Restrictive H-Coloring

  • Josep Díaz
  • Maria Serna
  • Dimitrios M. Thilikos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2573)

Abstract

We define a variant of the H-coloring problem where the number of preimages of certain vertices is predetermined as part of the problem input. We consider the decision and the counting version of the problem; namely the restrictive H-coloring and the restrictive #H-coloring problems. We provide a dichotomy theorem characterizing the H's for which the restrictive H-coloring problem is either NP-complete or polynomially solvable. Moreover, we prove that the same criterion discriminates the #P-complete and the polynomially solvable cases of the restrictive #itH-coloring problem. Finally, we prove that both results apply also to the list versions of the above problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters, 42(3):153–159, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Díaz. H-colorings of graphs. Bulletin of the European Association for Theoretical Computer Science, (75):82–92, 2001.Google Scholar
  3. 3.
    J. Díaz, M. Serna, and D. M. Thilikos. The complexity of restrictive H-coloring. TR LSI-02-22-R, Software Dept., Universitat Politcnica de Catalunya, 2002.Google Scholar
  4. 4.
    J. Díaz, M. Serna, and D. M. Thilikos. Recent results on parameterized H-colorings. In J. Nešetřil and P. Winkler, editors, Graphs, Morphisms and Statistical Physics, DIMACS series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 2002. To appear.Google Scholar
  5. 5.
    J. Díaz, M. Serna, and D. M. Thilikos. Counting list H-colorings and variants. TR LSI-01-27-R, Software Dept., Universitat Politcnica de Catalunya, 2001.Google Scholar
  6. 6.
    J. Díaz, M. Serna, and D. M. Thilikos. (H,C,K)-colorings: Fast, easy and hard cases. In Mathematical Foundations of Computer Science 2001, MFCS-2001, volume 2136 of LNCS, pages 304–315. Springer-Verlag, 2001.CrossRefGoogle Scholar
  7. 7.
    M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. Random Structures Algorithms, 17:260–289, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial Theory (series B), 72(2):236–250, 1998.CrossRefMathSciNetGoogle Scholar
  9. 9.
    T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica, 19:487–505, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphism. Manuscript, 2001.Google Scholar
  11. 11.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  12. 12.
    P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory (series B), 48:92–110, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Hell and J. Nešetřil. Counting list homomorphisms and graphs with bounded degrees. In J. Nešetřil and P. Winkler, editors, Graphs, Morphisms and Statistical Physics, DIMACS series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 2002. To appear.Google Scholar
  14. 14.
    J. Nešetřil, 2001. personal communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Josep Díaz
    • 1
  • Maria Serna
    • 1
  • Dimitrios M. Thilikos
    • 1
  1. 1.Dept. Llenguatges i SistemesUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations