Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software

  • Bruno Blanchet
  • Patrick Cousot
  • Radhia Cousot
  • Jérôme Feret
  • Laurent Mauborgne
  • Antoine Miné
  • David Monniaux
  • Xavier Rival
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2566)

Abstract

We report on a successful preliminary experience in the design and implementation of a special-purpose Abstract Interpretation based static program analyzer for the verification of safety critical embedded real-time software. The analyzer is both precise (zero false alarm in the considered experiment) and efficient (less than one minute of analysis for 10,000 lines of code). Even if it is based on a simple interval analysis, many features have been added to obtain the desired precision: expansion of small arrays, widening with several thresholds, loop unrolling, trace partitioning, relations between loop counters and other variables. The efficiency of the tool mainly comes from a clever representation of abstract environments based on balanced binary search trees.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-R. Abrial. On B. In D. Bert, editor, Proc. 2 nd Int. B Conf., B’98: Recent Advances in the Development and Use of the B Method, Montpellier, FR, LNCS 1393, pages 1–8. Springer-Verlag, 22-24 Apr. 1998.Google Scholar
  2. 2.
    American National Standards Institute, Inc. IEEE standard for binary floatingpoint arithmetic. Technical Report 754-1985, ANSI/IEEE, 1985. http://grouper.ieee.org/groups/754/.
  3. 3.
    P. R. Bevington and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 1992.Google Scholar
  4. 4.
    P. Cousot. The Marktoberdorf’98 generic abstract interpreter. http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml, Nov. 1998.
  5. 5.
    P. Cousot. Abstract interpretation based formal methods and future challenges, invited paper. In R. Wilhelm, editor, Informatics-10 Years Back, 10 Years Ahead, volume 2000 of LNCS, pages 138–156. Springer-Verlag, 2000. (minutes) TimeGoogle Scholar
  6. 6.
    P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In B.Y. Choueiry and T. Walsh, editors, Proc. 4 th Int. Symp. SARA’2000, Horseshoe Bay, TX, US, LNAI 1864, pages 1–25. Springer-Verlag, 26-29 Jul. 2000.Google Scholar
  7. 7.
    P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc. 2 nd Int. Symp. on Programming, pages 106–130. Dunod, 1976.Google Scholar
  8. 8.
    P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In 4 th POPL, pages 238–252, Los Angeles, CA, 1977. ACM Press.Google Scholar
  9. 9.
    P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6 th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.Google Scholar
  10. 10.
    D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, Mar. 1991.CrossRefGoogle Scholar
  11. 11.
    M. Handjieva and S. Tzolovski. Refining static analyses by trace-based partitioning using control flow. In G. Levi, editor, Proc. 5 th Int. Symp. SAS’ 98, Pisa, IT, 14-16 Sep. 1998, LNCS 1503, pages 200–214. Springer-Verlag, 1998.Google Scholar
  12. 12.
    G.J. Holzmann. Software analysis and model checking. In E. Brinksma and K.G. Larsen, editors, Proc. 14 th Int. Conf. CAV’2002, Copenhagen, DK, LNCS 2404, pages 1–16. Springer-Verlag, 27-31 Jul. 2002.Google Scholar
  13. 13.
    N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Int. Series in Computer Science. Prentice-Hall, June 1993.Google Scholar
  14. 14.
    JTC 1/SC 22. Programming languages-C. Technical report, ISO/IEC 9899:1999, 16 Dec. 1999.Google Scholar
  15. 15.
    X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, documentation and user’s manual (release 3.04). Technical report, INRIA, Rocquencourt, FR, 10 Dec. 2001. http://caml.inria.fr/ocaml/.
  16. 16.
    A. Miné. A new numerical abstract domain based on difference-bound matrices. In 0. Danvy and A. Filinski, editors, Proc. 2 nd Symp. PADO’2001, Århus, DK, 21-23 May 2001, LNCS 2053, pages 155–172. Springer-Verlag, 2001. http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf.Google Scholar
  17. 17.
    S. Owre, N. Shankar, and D.W.J. Stringer-Calvert. PVS: An experience report. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, PROC Applied Formal Methods-FM-Trends’98, International Workshop on Current Trends in Applied Formal Method, Boppard, DE, LNCS 1641, pages 338–345. Springer-Verlag, 7-9 Oct. 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bruno Blanchet
    • 1
  • Patrick Cousot
    • 1
  • Radhia Cousot
    • 2
  • Jérôme Feret
    • 1
  • Laurent Mauborgne
    • 1
  • Antoine Miné
    • 1
  • David Monniaux
    • 1
  • Xavier Rival
    • 1
  1. 1.CNRS & École normale supérieureParisFrance
  2. 2.CNRS & École polytechniquePalaiseau cedexFrance

Personalised recommendations