Synchronization of Finite Automata: Contributions to an Old Problem

  • Arto Salomaa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2566)


In spite of its simple formulation, the problem about the synchronization of a finite deterministic automaton is not yet properly understood. The present paper investigates this and related problems within the general framework of a composition theory for functions over a finite domain N with n elements. The notion of depth introduced in this connection is a good indication of the complexity of a given function, namely, the complexity with respect to the length of composition sequences in terms of functions belonging to a basic set. Our results show that the depth may vary considerably with the target function. We also establish criteria about the reachability of some target functions, notably constants. Properties of n such as primality or being a power of 2 turn out to be important, independently of the semantic interpretation. Most of the questions about depth, as well as about the comparison of different notions of depth, remain open. Our results show that the study of functions of several variables may shed light also to the case where all functions considered are unary.


Unary Function Symmetric Group Target Function Finite Automaton Composition Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Adler, I. Goodwin and B. Weiss, Equivalence of topological Markov shifts. Israel J. Math. 27 (1977) 49–63.zbMATHCrossRefGoogle Scholar
  2. 2.
    S. Bogdanović, B. Imreh, M. Ćirić and T. Petković, Directable automata and their generalizations: a survey. Novi Sad J. Math. 29 (1999).Google Scholar
  3. 3.
    J. Černý, Poznámka k homogénnym experimentom s konečnými automatmi. Mat.fyz.čas SAV 14 (1964) 208-215.Google Scholar
  4. 4.
    J. Černý, A. Pirická and B. Rosenauerová, On directable automata. Kybernetika 7 (1971) 289–298.MathSciNetzbMATHGoogle Scholar
  5. 5.
    L. Dubuc, Sur les automates circulaires et la conjecture de Černý. Informatique Théorique et Applications 32 (1998) 21–34.MathSciNetGoogle Scholar
  6. 6.
    D. Epsein, Reset sequences for monotonic automata. Siam J. Comput. 19 (1990) 500–510.CrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Imreh and M. Steinby, Directable nondeterministic automata. Acta Cybernetica 14 (1999) 105–116.zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Mateescu and A. Salomaa, Many-valued truth functions, Černý’s conjecture and road coloring. EATCS Bulletin 68 (1999) 134–150.zbMATHMathSciNetGoogle Scholar
  9. 9.
    E.F. Moore, Gedanken experiments on sequential machines. In C.E. Shannon and J. McCarthy (ed.) Automata Studies, Princeton University Press (1956) 129–153.Google Scholar
  10. 10.
    G. Păun, G. Rozenberg and A. Salomaa, DNA Computing. New Computing Paradigms. Springer-Verlag, Berlin, Heidelberg, New York (1998).zbMATHGoogle Scholar
  11. 11.
    S. Piccard, Sur les bases du groupe symétrique et les couples de substitutions qui engendrent un goupe régulier. Librairie Vuibert, Paris (1946).Google Scholar
  12. 12.
    J.-E. Pin, Le probléme de la synchronisation, Contribution a l’étude de la conjecture de Černý. Thèse de 3e cycle a l’Université Pierre et Marie Curie (Paris 6) (1978).Google Scholar
  13. 13.
    E. Post, Introduction to a general theory of elementary propositions. Amer. J. Math. 43 (1921) 163–185.CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Salomaa, A theorem concerning the composition of functions of several variables ranging over a finite set. J. Symb. Logic 25 (1960) 203–208.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Salomaa, On the composition of functions of several variables ranging over a finite set. Ann. Univ. Turkuensis, Ser. AI, 41 (1960).Google Scholar
  16. 16.
    A. Salomaa, On basic groups for the set of functions over a finite domain. Ann. Acad. Scient. Fennicae, Ser. AI, 338 (1963).Google Scholar
  17. 17.
    A. Salomaa, Composition sequences for functions over a finite domain. Turku Centre for Computer Science Technical Report 332 (2000). To appear in Theoretical Computer Science.Google Scholar
  18. 18.
    A. Salomaa, Depth of functional compositions. EATCS Bulletin 71 (2000) 143–150.zbMATHMathSciNetGoogle Scholar
  19. 19.
    A. Salomaa, Compositions over a finite domain: from completeness to synchronizable automata. In A. Salomaa, D. Wood and S. Yu (Ed.) A Half-Century of Automata Theory, World Scientific Publ. Co. (2001) 131–143.Google Scholar
  20. 20.
    S.V. Yablonskii, Functional constructions in k-valued logic (in Russian). Tr.Matem.Inst. im. V.A.Steklova 51,5 (1958) 5–142.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Arto Salomaa
    • 1
  1. 1.Turku Centre for Computer ScienceTurkuFinland

Personalised recommendations