Deciding Termination of Query Evaluation in Transitive-Closure Logics for Constraint Databases

  • Floris Geerts
  • Bart Kuijpers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2572)

Abstract

We study extensions of first-order logic over the reals with different types of transitive-closure operators as query languages for constraint databases that can be described by Boolean combinations of polynomial inequalities over the reals. We are in particular interested in deciding the termination of the evaluation of queries expressible in these transitive-closure logics. It turns out that termination is undecidable in general. However, we show that the termination of the transitive closure of a continuous function graph in the two-dimensional plane, viewed as a binary relation over the reals, is decidable, and even expressible in first-order logic over the reals. Based on this result, we identify a particular transitive-closure logic for which termination of query evaluation is decidable and which is more expressive than first-order logic over the reals. Furthermore, we can define a guarded fragment in which exactly the terminating queries of this language are expressible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ll. Alsedà, J. Llibre, and M. Misiurewicz. Combinatorial Dynamics and Entropy in Dimension One, volume 5 of Advances Series in Nonlinear Dynamics. World Scientific, 1993.Google Scholar
  2. 2.
    M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connectivity queries in constraint databases. In Proceedings of the 19th ACM SIGMODSIGACT-SIGART Symposium on Principles of Database Systems (PODS’00), pages 104–115. ACM, 2000.Google Scholar
  3. 3.
    V.D. Blondel, O. Bournez, P. Koiran, C.H. Papadimitriou, and J.N. Tsitsiklis. Deciding stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science, 255(1–2):687–696, 2001.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V.D. Blondel, O. Bournez, P. Koiran, and J.N. Tsitsiklis. The stability of saturated linear dynamical systems is undecidable. Journal of Computer and System Sciences, 62(3):442–462, 2001.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of Ergebenisse der Mathematik und ihrer Grenzgebiete. Folge 3. Springer-Verlag, 1998.Google Scholar
  6. 6.
    G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer-Verlag, 1975.Google Scholar
  7. 7.
    M. Davis, Y. Matijasevic, and J. Robinson. Hilbert’s Tenth Problem. Diophantine equations: positive aspects of a negative solution. In Mathematical Developments Arising from Hilbert Problems, volume 28, pages 323–378. American Mathematical Society, 1976.MathSciNetGoogle Scholar
  8. 8.
    H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.Google Scholar
  9. 9.
    F. Geerts. Linear approximation of semi-algebraic spatial databases using transitive closure logic, in arbitrary dimension. In G. Ghelli and G. Grahne, editors, Proceedings of the 8th International Workshop on Database Programming Languages (DBPL’01), volume 2397 of Lecture Notes in Computer Science, pages 182–197. Springer-Verlag, 2002.Google Scholar
  10. 10.
    F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases using transitive-closure logic. In Proceedings of the 19th ACM SIGMOD-SIGACTSIGART Symposium on Principles of Database Systems (PODS’00), pages 126–135. ACM, 2000.Google Scholar
  11. 11.
    S. Grumbach and G. Kuper. Tractable recursion over geometric data. In G. Smolka, editor, Proceedings of Principles and Practice of Constraint Programming (CP’97), volume 1330 of Lecture Notes in Computer Science, pages 450–462. Springer-Verlag, 1997.Google Scholar
  12. 12.
    P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Journal of Computer and System Science, 51(1):26–52, 1995. A preliminary report appeared in the Proceedings 9th ACM Symposium on Principles of Database Systems (PODS’90).Google Scholar
  13. 13.
    P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132:113–128, 1994.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Kreutzer. Fixed-point query languages for linear constraint databases. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’00), pages 116–125. ACM, 2000.Google Scholar
  15. 15.
    S. Kreutzer. Operational semantics for fixed-point logics on constraint databases. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of the 8th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’01), volume 2250 of Lecture Notes in Computer Science, pages 470–484. Springer-Verlag, 2001.Google Scholar
  16. 16.
    S. Kreutzer. Query languages for constraint databases: First-order logic, fixedpoints, and convex hulls. In J. Van den Bussche and V. Vianu, editors, Proceedings of 8th International Conference on Database Theory (ICDT’01), volume 1973 of Lecture Notes in Computer Science, pages 248–262. Springer-Verlag, 2001.Google Scholar
  17. 17.
    G.M. Kuper, J. Paredaens, and L. Libkin. Constraint databases. Springer-Verlag, 1999.Google Scholar
  18. 18.
    J. Llibre and C. Preston. Personal communication. 2002.Google Scholar
  19. 19.
    Y. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.Google Scholar
  20. 20.
    C. Preston. Iterates of Maps on an Interval, volume 999 of Lecture Notes in Mathematics. Springer-Verlag, 1983.Google Scholar
  21. 21.
    A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, 1951.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Floris Geerts
    • 1
  • Bart Kuijpers
    • 2
  1. 1.University of Helsinki Helsinki Institute for Information TechnologyHelsinkiFinland
  2. 2.Dept. of Mathematics, Physics and Computer Science Universitaire CampusUniversity of LimburgDiepenbeekBelgium

Personalised recommendations