Optimal Range Max Datacube for Fixed Dimensions

  • Chung Keung Poon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2572)

Abstract

We present a new data structure to support orthogonal range max queries on a datacube. For a d-dimensional datacube with size n in each dimension where dc3 log log n/ log(log* n), our structure requires O(cd1) query time and O((c2n)d) storage where c1, c2 and c3 are constants independent of d and n; and log* n is the minimum number of repeated logarithms it takes to reduce the value n to at most 2. Hence our data structure is asymptotically optimal when d is fixed, i.e., a constant independent of n.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In 13th International Conference on Data Engineering, pages 232–243. IEEE, 1997.Google Scholar
  2. 2.
    S. Alstrup, G.S. Brodal, and T. Rauhe. New data structures for orthogonal range searching. In 41st Annual Symposium on Foundations of Computer Science, pages 198–207. IEEE, 2000.Google Scholar
  3. 3.
    M. Bender and M. Farach-Colton. The LCA problem revisited. In 4th Latin American Theoretical Informatics, volume 1776 of Lecture Notes in Computer Science, pages 88–94, Punta del Este, Uruguay, April 2000. Springer-Verlag.CrossRefGoogle Scholar
  4. 4.
    J.L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM, 23(4):214–228, April 1980.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C.Y. Chan and Yannis E. Ioannidis. Hierarchical prefix cubes for range-sum queries. In Proceedings of the 25th International Conference on Very Large Data Bases, pages 675–686. Morgan-Kaufmann, 1999.Google Scholar
  6. 6.
    Bernard Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM Journal on Computing, 17(3):427–462, June 1988.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. Journal of the ACM, 37(2):200–212, April 1990.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bernard Chazelle. Lower bounds for orthogonal range searching: II. the arithmetic model. Journal of the ACM, 37(3):439–463, July 1990.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bernard Chazelle and Burton Rosenberg. Computing partial sums in multidimensional arrays. In 5th Annual Symposium on Computational Geometry, pages 131–139. ACM, 1989.Google Scholar
  10. 10.
    Seok-Ju Chun, Chin-Wan Chung, Ju-Hong Lee, and Lee Seok-Lyong. Dynamic update cube for range-sum queries. In Proceedings of the 27th International Conference on Very Large Data Bases, pages 521–530, Roma, Italy, 2001.Google Scholar
  11. 11.
    E.F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: an IT mandate. Technical report, E.F. Codd and Associates, 1993.Google Scholar
  12. 12.
    George Colliat. OLAP, relational and multidimensional database systems. SIGMOD RECORD, September 1996.Google Scholar
  13. 13.
    The OLAP Council. MD-API the OLAP application program interface version 0.5 specification. Technical report, September 1996.Google Scholar
  14. 14.
    Michael Fredman. A lower bound on the complexity of orthogonal range queries. Journal of the ACM, 28(4):696–705, 1981.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for goemetry problems. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pages 135–143. ACM, 1984.Google Scholar
  16. 16.
    S. Geffner, D. Agrawal, and A. El Abbadi. The dynamic data cube. In Advances in Database Technology (EDBT’2000), volume 1777 of Lecture Notes in Computer Science, pages 237–253. Springer-Verlag, March 2000.CrossRefGoogle Scholar
  17. 17.
    S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes. In 15th International Conference on Data Engineering, pages 328–335. IEEE, 1999.Google Scholar
  18. 18.
    S. Geffner, M. Riedewald, D. Agrawal, and A. El Abbadi. Data cubes in dynamic environments. IEEE Data Engineering Bulletin, 22(4):31–40, 1999.Google Scholar
  19. 19.
    Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. In 12th International Conference on Data Engineering, pages 152–159. IEEE, 1996.Google Scholar
  20. 20.
    Ching-Tien Ho, Rakesh Agrawal, Nimrod Meggido, and Jyh-Jong Tsay. Techniques for speeding up rang-max queries. Technical report, IBM Research Report, April 1997.Google Scholar
  21. 21.
    Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range queries in OLAP data cubes. In ACM SIGMOD Conference on the Management of Data, pages 73–88, 1997.Google Scholar
  22. 22.
    Dong Wook Kin, Eun Jung Lee, Myoung Ho Kim, and Yoon Joon Lee. An efficient processing of rnage-MIN/MAX queries over data cube. Information Scieces, 112:223–237, 1998.CrossRefGoogle Scholar
  23. 23.
    Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggregate queries with a multi-resolution tree structure. In ACM SIGMOD Conference on the Management of Data, pages 401–412, May 2001.Google Scholar
  24. 24.
    Sin Yeung Lee, Tok Wang Ling, and HuaGang Li. Hierarchical compact cube for range-max queries. In Proceedings of the 26th International Conference on Very Large Data Bases, pages 232–241, Cairo, Egypt, 2000. Morgan-Kaufmann.Google Scholar
  25. 25.
    Chung Keung Poon. Orthogonal range queries in OLAP. In 8th International Conference on Database Theory, volume 1973 of Lecture Notes in Computer Science, pages 361–374, London, Britain, January 2001. Springer-Verlag.Google Scholar
  26. 26.
    M. Riedewald, D. Agrawal, A. El Abbadi, and R. Pajarola. Space-efficient data cubes for dynamic environments. In 2nd International Conference on Data Warehousing and Knowledge Discovery, volume 1874 of Lecture Notes in Computer Science, pages 24–33, London, Britain, September 2000. Springer-Verlag.Google Scholar
  27. 27.
    Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi. pCube: update-efficient online aggregation with progressive feedback and error bounds. In Proceedings of 12th International Conference on Scientific and Statistical Database Management, pages 95–108. IEEE Computer Society, 2000.Google Scholar
  28. 28.
    Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi. Flexible data cubes for online aggregation. In 8th International Conference on Database Theory, volume 1973 of Lecture Notes in Computer Science, pages 159–173, London, Britain, January 2001. Springer-Verlag.Google Scholar
  29. 29.
    Andrew Yao. Space-time tradeoff for answering range queries. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 128–136, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Chung Keung Poon
    • 1
  1. 1.Dept. of Computer ScienceCity U. of Hong KongChina

Personalised recommendations