Advertisement

De Sitter Space

  • M. Spradlin
  • A. Strominger
  • A. Volovich
Chapter
Part of the Les Houches - Ecole d’Ete de Physique Theorique book series (LHSUMMER, volume 76)

Abstract

These lectures present an elementary discussion of some background material relevant to the problem of de Sitter quantum gravity. The first two lectures discuss the classical geometry of de Sitter space and properties of quantum field theory on de Sitter space, especially the temperature and entropy of de Sitter space. The final lecture contains a pedagogical discussion of the appearance of the conformal group as an asymptotic symmetry group, which is central to the dS/CFT correspondence. A (previously lacking) derivation of asymptotically de Sitter boundary conditions is also given.

Keywords

Black Hole Gauge Theory Quantum Gravity South Pole Conformal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.D. Bekenstein, Phys. Rev. D 7 (1973) 2333.CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15 (1977) 2738.CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    A. Strominger and C. Vafa, Phys. Lett. B 379 (1996) 99 [hep-th/9601029].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231; Int. J. Theor. Phys. 38 (1998) 1113 [hep-th/9711200].zbMATHMathSciNetADSGoogle Scholar
  6. [6]
    K. Pilch, P. van Nieuwenhuizen and M.F. Sohnius, Commun. Math. Phys. 98 (1985) 105.CrossRefADSGoogle Scholar
  7. [7]
    C.M. Hull, JHEP 9807 (1998) 021 [hep-th/9806146].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    N.C. Tsamis and R.P. Woodard, Annals Phys. 253 (1997) 1 [hep-ph/9602316].zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    J. Maldacena and A. Strominger, JHEP 9802 (1998) 014 [gr-qc/9801096].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    M.I. Park, Phys. Lett. B 440 (1998) 275 [hep-th/9806119].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    M. Banados, T. Brotz and M.E. Ortiz, Phys. Rev. D 59 (1999) 046002 [hep-th/9807216].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    W.T. Kim, Phys. Rev. D 59 (1999) 047503 [hep-th/9810169].CrossRefADSGoogle Scholar
  13. [13]
    F. Lin and Y. Wu, Phys. Lett. B 453 (1999) 222 [hep-th/9901147].zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    R. Bousso, JHEP 9906 (1999) 028 [hep-th/9906022].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    C.M. Hull and R. R. Khuri, Nucl. Phys. B 575 (2000) 231 [hep-th/9911082].zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S. Hawking, J. Maldacena and A. Strominger, JHEP 0105 (2001) 001 [hep-th/0002145].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    T. Banks, Cosmological breaking of supersymmetry or little Lambda goes back to the future. II [hep-th/0007146].Google Scholar
  18. [18]
    R. Bousso, JHEP 0011 (2000) 038 [hep-th/0010252].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    R. Bousso, JHEP 0104 (2001) 035 [hep-th/0012052].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    A. Volovich, Discreteness in deSitter space and quantization of Kaehler manifolds [hep-th/0101176].Google Scholar
  21. [21]
    T. Banks and W. Fischler, M-theory observables for cosmological space-times [hep-th/0102077].Google Scholar
  22. [22]
    V. Balasubramanian, P. Horava and D. Minic, JHEP 0105 (2001) 043 [hep-th/0103171].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    S. Deser and A. Waldron, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198].zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. [24]
    S. Deser and A. Waldron, Phys. Lett. B 513 (2001) 137 [hep-th/0105181].zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. [25]
    E. Witten, Quantum gravity in de Sitter space [hep-th/0106109].Google Scholar
  26. [26]
    E. Witten, Quantum gravity in de Sitter space, Strings 2001 online proceedings http://theory.tifr.res.in/strings/Proceedings.
  27. [27]
    A. Strominger, The dS/CFT correspondence [hep-th/0106113].Google Scholar
  28. [28]
    M. Li, Matrix model for de Sitter [hep-th/0106184].Google Scholar
  29. [29]
    S. Nojiri and S. D. Odintsov, Conformal anomaly from dS/CFT correspondence [hep-th/0106191].Google Scholar
  30. [30]
    E. Silverstein, (A)dS backgrounds from asymmetric orientifolds [hep-th/0106209].Google Scholar
  31. [31]
    D. Klemm, Some aspects of the de Sitter/CFT correspondence [hep-th/0106247].Google Scholar
  32. [32]
    A. Chamblin and N. D. Lambert, Zero-branes, quantum mechanics and the cosmological constant [hep-th/0107031].Google Scholar
  33. [33]
    Y. Gao, Symmetries, matrices, and de Sitter gravity [hep-th/0107067].Google Scholar
  34. [34]
    J. Bros, H. Epstein and U. Moschella, The asymptotic symmetry of de Sitter space-time [hep-th/0107091].Google Scholar
  35. [35]
    S. Nojiri and S. D. Odintsov, Quantum cosmology, inflationary brane-world creation and dS/CFT correspondence [hep-th/0107134].Google Scholar
  36. [36]
    E. Halyo, De Sitter entropy and strings [hep-th/0107169].Google Scholar
  37. [37]
    I. Sachs and S. N. Solodukhin, Horizon holography [hep-th/0107173].Google Scholar
  38. [38]
    A.J. Tolley and N. Turok, Quantization of the massless minimally coupled scalar field and the dS/CFT correspondence [hep-th/0108119].Google Scholar
  39. [39]
    T. Shiromizu, D. Ida and T. Torii, Gravitational energy, dS/CFT correspondence and cosmic no-hair [hep-th/0109057].Google Scholar
  40. [40]
    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states [hep-th/0109096].Google Scholar
  41. [41]
    R. Kallosh, N = 2 supersymmetry and de Sitter space [hep-th/0109168].Google Scholar
  42. [42]
    C.M. Hull, De Sitter Space in Supergravity and M Theory [hep-th/0109213].Google Scholar
  43. [43]
    B.P. Schmidt et al., ApJ 507 (1998) 46 [astro-ph/9805200].CrossRefADSGoogle Scholar
  44. [44]
    A.G. Riess et al., ApJ 116 (1998) 1009 [astro-ph/9805201].Google Scholar
  45. [45]
    S. Perlmutter et al., ApJ 517 (1999) 565 [astro-ph/9812133].CrossRefADSGoogle Scholar
  46. [46]
    S. Perlmutter, Int. J. Mod. Phys. A 15S1 (2000) 715 [eConfC 990809 (2000) 715].CrossRefGoogle Scholar
  47. [47]
    I. Antoniadis, P.O. Mazur and E. Mottola, Comment on Nongaussian isocurvature perturbations from inflation [astro-ph/9705200].Google Scholar
  48. [48]
    P.O. Mazur and E. Mottola, Phys. Rev. D 64 (2001) 104022 [hep-th/0106151].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    S. Deser and R. Jackiw, Annals Phys. 153 (1984) 405.CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).zbMATHGoogle Scholar
  51. [51]
    N.A. Chernikov and E.A. Tagirov, Ann. Poincare Phys. Theor. A 9 (1968) 109.MathSciNetzbMATHGoogle Scholar
  52. [52]
    E.A. Tagirov, Ann. Phys. 76 (1973) 561.CrossRefADSGoogle Scholar
  53. [53]
    R. Figari, R. Hoegh-Krohn and C.R. Nappi, Commun. Math. Phys. 44 (1975) 265.CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    H. Rumpf and H.K. Urbantke, Ann. Phys. 114 (1978) 332.CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    L.F. Abbott and S. Deser, Nucl. Phys. B 195 (1982) 76.CrossRefADSGoogle Scholar
  56. [56]
    A.H. Najmi and A.C. Ottewill, Phys. Rev. D 30 (1984) 1733.CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    L.H. Ford, Phys. Rev. D 31 (1985) 710.CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    E. Mottola, Phys. Rev. D 31 (1985) 754.CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    B. Allen, Phys. Rev. D 32 (1985) 3136.CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    B. Allen and A. Folacci, Phys. Rev. D 35 (1987) 3771.CrossRefADSMathSciNetGoogle Scholar
  61. [61]
    J.D. Brown and M. Henneaux, Commun. Math. Phys. 104 (1986) 207.zbMATHCrossRefADSMathSciNetGoogle Scholar
  62. [62]
    J.D. Brown and J.W. York, Phys. Rev. D 47 (1993) 1407.CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    J.D. Brown, S.R. Lau and J.W. York, Action and Energy of the Gravitational Field [gr-qc/0010024].Google Scholar
  64. [64]
    M. Henningson and K. Skenderis, JHEP 9807 (1998) 023 [hep-th/9806087].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121].zbMATHCrossRefADSMathSciNetGoogle Scholar
  66. [66]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230].zbMATHCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag 2002

Authors and Affiliations

  • M. Spradlin
    • 1
    • 2
  • A. Strominger
    • 1
  • A. Volovich
    • 1
    • 3
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Princeton UniversityPrincetonUSA
  3. 3.L.D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations