Advertisement

An Automata-Theoretic Approach to Constraint LTL

  • Stéphane Demri
  • Deepak D’souza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2556)

Abstract

We consider an extension of linear-time temporal logic (LTL) with constraints interpreted over a concrete domain. We use a new automata-theoretic technique to show pspace decidability of the logic for the constraint systems (ℤ,<, =) and (ℕ,<, =).We also give an automata-theoretic proof of a result of Balbiani and Condotta [BC02] for constraint systems that satisfy a “completion” property.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. All83.
    J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–846, 1983.zbMATHCrossRefGoogle Scholar
  2. BC02.
    Ph. Balbiani and J.F. Condotta. Computational complexity of propositional linear temporal logics based on qualitative spatial or temporal reasoning. In Frontiers of Combining Systems (FroCoS’02), pages 162–176, 2002.Google Scholar
  3. CC00.
    H. Comon and V. Cortier. Flatness is not a weakness. In 14 Int. Workshop Computer Science Logic, pages 262–276. LNCS, vol. 1862. Springer, 2000.Google Scholar
  4. DD02.
    S. Demri and D. D’souza. An automata-theoretic approach to constraint LTL. CMI Internal Report TCS-02-01, 2002. http://www.cmi.ac.in.
  5. Pnu77.
    A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundation of Computer Science, pages 46–57, 1977.Google Scholar
  6. RCC92.
    D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In 3rd Conference on Knowledge Representation and Reasoning, pages 165–176. Morgan Kaufman, 1992.Google Scholar
  7. Saf88.
    S. Safra. On the complexity of ω-automata. Proc. 29th IEEE Symp. on Foundations of Computer Science, pages 319–327, 1988.Google Scholar
  8. SC85.
    P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. JACM, 32(3):733–749, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Tho90.
    W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B. Elsevier, 1990.Google Scholar
  10. VW86.
    M. Vardi and P. Wolper. An automata theoretic approach to automatic program verification. In Logic in Computer Science, pages 332–334. IEEE, 1986.Google Scholar
  11. WZ00.
    F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning based on RCC-8. In KR’00, pages 3–14. Morgan Kaufmann, 2000.Google Scholar
  12. WZ02.
    F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and reasoning: a computational perspective. In Exploring Artificial Intelligence in the New Millenium, 2002. To appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stéphane Demri
    • 1
  • Deepak D’souza
    • 2
  1. 1.ENS de Cachan amp; CNRS UMR 8643Lab. Spécification et VérificationCachan CedexFrance
  2. 2.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations