Hierarchical ID-Based Cryptography

  • Craig Gentry
  • Alice Silverberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2501)

Abstract

We present hierarchical identity-based encryption schemes and signature schemes that have total collusion resistance on an arbitrary number of levels and that have chosen ciphertext security in the random oracle model assuming the difficulty of the Bilinear Diffie-Hellman problem.

Keywords

identity-based cryptography hierarchical identity-based cryptography elliptic curves pairing-based cryptography 

References

  1. 1.
    S. S. Al-Riyami and K. G. Paterson. Authenticated three party key agreement protocols from pairings. Cryptology e-Print Archive, http://eprint.iacr.org/2002/035/.
  2. 2.
    P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems, in Advances in Cryptology-Crypto 2002, Lecture Notes in Computer Science 2442 (2002), Springer, 354–368.CrossRefGoogle Scholar
  3. 3.
    R. Blom. An optimal class of symmetric key generation systems, in Advances in Cryptology-Eurocrypt’ 84, Lecture Notes in Computer Science 209 (1984), Springer, 335–338.Google Scholar
  4. 4.
    C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung. Perfectly-secure key distribution for dynamic conferences, in Advances in Cryptology-Crypto’ 92, Lecture Notes in Computer Science 740 (1993), Springer, 471–486.Google Scholar
  5. 5.
    D. Boneh and M. Franklin. Identity based encryption from the Weil pairing, in Advances in Cryptology-Crypto 2001, Lecture Notes in Computer Science 2139 (2001), Springer, 213–229.CrossRefGoogle Scholar
  6. 6.
    D. Boneh and M. Franklin. Identity based encryption from the Weil pairing, extended version of Advances in Cryptology-Crypto 2001, [5], http://www.cs.stanford.edu/~dabo/papers/ibe.pdf.CrossRefGoogle Scholar
  7. 7.
    D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing, in Advances in Cryptology-Asiacrypt 2001, Lecture Notes in Computer Science 2248 (2001), Springer, 514–532.CrossRefGoogle Scholar
  8. 8.
    C. Cocks. An identity based encryption scheme based on quadratic residues, in Cryptography and Coding, Lecture Notes in Computer Science 2260 (2001), Springer, 360–363.CrossRefGoogle Scholar
  9. 9.
    E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes, in Advances in Cryptology-Crypto’ 99, Lecture Notes in Computer Science 1666 (1999), Springer, 537–554.Google Scholar
  10. 10.
    G. Hanaoka, T. Nishioka, Y. Zheng, and H. Imai. An efficient hierarchical identity-based key-sharing method resistant against collusion-attacks, in Advances in Cryptology-Asiacrypt 1999, Lecture Notes in Computer Science 1716 (1999), Springer, 348–362.Google Scholar
  11. 11.
    G. Hanaoka, T. Nishioka, Y. Zheng, and H. Imai, A hierarchical non-interactive key-sharing scheme with low memory size and high resistance against collusion attacks, to appear in The Computer Journal.Google Scholar
  12. 12.
    J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption, in Advances in Cryptology-Eurocrypt 2002, Lecture Notes in Computer Science 2332 (2002), Springer, 466–481.CrossRefGoogle Scholar
  13. 13.
    A. Joux. A one round protocol for tripartite Diffie-Hellman, in Algorithmic Number Theory (ANTS-IV), Lecture Notes in Computer Science 1838 (2000), Springer, 385–394.CrossRefGoogle Scholar
  14. 14.
    V. Miller. Short programs for functions on curves, unpublished manuscript.Google Scholar
  15. 15.
    K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology, in Advances in Cryptology-Crypto 2002, Lecture Notes in Computer Science 2442 (2002), Springer, 336–353.CrossRefGoogle Scholar
  16. 16.
    R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. SCIC 2000-C20, Okinawa, Japan, January 2000.Google Scholar
  17. 17.
    A. Shamir. Identity-based cryptosystems and signature schemes, in Advances in Cryptology-Crypto’ 84, Lecture Notes in Computer Science 196 (1984), Springer, 47–53.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Craig Gentry
    • 1
  • Alice Silverberg
    • 2
  1. 1.DoCoMo USA LabsSan JoseUSA
  2. 2.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations