Computing Labeled Orthogonal Drawings

  • Carla Binucci
  • Walter Didimo
  • Giuseppe Liotta
  • Maddalena Nonato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

This paper studies the problem of computing labeled orthogonal drawings. A label is modeled as a rectangle of prescribed size and it can be associated with either a vertex or an edge. Several optimization goals are taken into account. Namely, the labeled drawing can be required to have minimum total edge length, minimum width, minimum height, or minimum area. We present ILP models to compute optimal drawings with respect to the first three objectives and an algorithm exploiting these models which computes a drawing of minimum area (the compaction problem is known to be NP-complete in general).

References

  1. 1.
    C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Computing labeled orthogonal drawings, manuscript: http://www.diei.unipg.it/PAG PERS/binucci/binucci.htm.
  2. 2.
    C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Labeling heuristics for orthogonal drawings. In Symposium on Graph Drawing (GD’01), volume 2265 of LNCS, pages 139–153, 2002.Google Scholar
  3. 3.
    S. Bridgeman, G. D. Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-regularity and optimal area drawings of orthogonal representations. Computational Geometry: Theory and Applications, 16:53–93, 2000.MATHMathSciNetGoogle Scholar
  4. 4.
    R. Castello, R. Milli, and I. Tollis. An algorithmic framework for visualizing statecharts. In Symposium on Graph Drawing (GD’00), volume 1984 of LNCS, pages 139–149, 2001.Google Scholar
  5. 5.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.Google Scholar
  6. 6.
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.CrossRefGoogle Scholar
  7. 7.
    K. G. Kakoulis and I. G. Tollis. An algorithm for labeling edges of hierarchical drawings. In Symposium on Graph Drawing (GD’97), volume 1353 of LNCS, pages 169–180, 1998.Google Scholar
  8. 8.
    K. G. Kakoulis and I. G. Tollis. On the complexity of the edge label placement problem. Computational Geometry: Theory and Applications, 18:1–17, 2001.MATHMathSciNetGoogle Scholar
  9. 9.
    M. Kaufmann and D. Wagner. Drawing Graphs. Springer Verlag, 2001.Google Scholar
  10. 10.
    G. Klau and P. Mutzel. Optimal labeling of point features in rectangular labeling models. Mathematical Programming, Series B, To appear.Google Scholar
  11. 11.
    G. Klau and P. Mutzel. Combining graph labeling and compaction. In Symposium on Graph Drawing (GD’99), LNCS, pages 27–37, 1999.Google Scholar
  12. 12.
    G. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In Integer Programming and Combinatorial Optimization (IPCO’99), volume 1610 of LNCS, pages 304–319, 1999.CrossRefGoogle Scholar
  13. 13.
    G. Klau and P. Mutzel. Optimal labelling of point features in the sliding model. In In Proc. COCOON’00, volume 1858 of LNCS, pages 340–350, 2001.Google Scholar
  14. 14.
    S. Nakano, T. Nishizeki, T. Tokuyama, and S. Watanabe. Labeling points with rectangles of various shape. In Symposium on Graph Drawing (GD’00), volume 1984 of LNCS, pages 91–102, 2001.Google Scholar
  15. 15.
    T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, volume 32 of Annals of Discrete Mathematics. North-Holland, 1988.Google Scholar
  16. 16.
    M. Patrignani. On the complexity of orthogonal compaction. Computational Geometry: Theory and Applications, 19:47–67, 2001.MATHMathSciNetGoogle Scholar
  17. 17.
    T. Strijk and A. Wol.. The map labeling bibliography. on-line: http://www.mathinf. uni-greifswald.de/map-labeling/bibliography/.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Carla Binucci
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Maddalena Nonato
    • 1
  1. 1.Università di PerugiaPerugia

Personalised recommendations