Semi-dynamic Orthogonal Drawings of Planar Graphs

(Extended Abstract)
  • Walter Bachl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

We introduce a newapproac h to orthogonal drawings of planar graphs. We define invariants that are respected by every drawing of the graph. The invariants are the embedding together with relative positions of adjacent vertices. Insertions imply only minor changes of the invariants. This preserves the users mental map. Our technique is applicable to two-connected planar graphs with vertices of arbitrary size and degree. Newv ertices and edges can be added to the graph in O(log n) time. The algorithm produces drawings with at most m+f bends, where m and f are the number of edges and faces of the graph.

References

  1. 1.
    S.S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. InteractiveGiotto: An algorithm for interactive orthogonal graph drawing. In Graph Drawing (GD 97), LNCS 1353, pages 303–308. Springer, 1997.CrossRefGoogle Scholar
  2. 2.
    U. Brandes, M. Güdemann, and D. Wagner. Fully dynamic orthogonal graph layout for interactive systems. Technical report, Universität Konstanz, 2000.Google Scholar
  3. 3.
    T.C. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In Proc. European Symposium on Algorithms (ESA’ 97), Lecture Notes in Computer Science 1284, pages 37–52. Springer, 1997.Google Scholar
  4. 4.
    F. J. Brandenburg. Designing graph drawings by layout graph grammars. In Graph Drawing (GD 94), LNCS 894, pages 416–427. Springer, 1995.Google Scholar
  5. 5.
    G. Di Battista and R. Tamassia. On-line planarity testing. SIAMJournal on Computing, 25(5):956–997, 1996.MATHCrossRefGoogle Scholar
  6. 6.
    S.S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms. In Graph Drawing (GD 98), LNCS 1547, pages 57–71. Springer, 1998.CrossRefGoogle Scholar
  7. 7.
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In Proceedings of Compugraphics’ 91, pages 24–33, 1991.Google Scholar
  8. 8.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In Graph Drawing (GD 95), LNCS 1353, pages 254–266. Springer, 1996.CrossRefGoogle Scholar
  9. 9.
    U. Fößmeier. Interactive orthogonal graph drawing: Algorithms and bounds. In Graph Drawing (GD 97), LNCS 1353, pages 111–123. Springer, 1997.CrossRefGoogle Scholar
  10. 10.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. Journal of visual languages and computing, 6:183–210, 1995.CrossRefGoogle Scholar
  11. 11.
    A. Papakostas and I.G. Tollis. Issues in interactive orthogonal graph drawing. In Graph Drawing (GD 95), LNCS 1027, pages 419–430. Springer, 1996.CrossRefGoogle Scholar
  12. 12.
    F.P. Preparata and M.I. Shamos Computational Geometry: An Introduction Springer. 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Walter Bachl
    • 1
  1. 1.sd&m AG81837München

Personalised recommendations