Improving Walker’s Algorithm to Run in Linear Time

  • Christoph Buchheim
  • Michael Jünger
  • Sebastian Leipert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)


The algorithm of Walker [5] is widely used for drawing trees of unbounded degree, and it is widely assumed to run in linear time, as the author claims in his article. But the presented algorithm clearly needs quadraticrun time. We explain the reasons for that and present a revised algorithm that creates the same layouts in linear time.


  1. 1.
    C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algorithm to run in linear time. Technical Report zaik2002-431, ZAIK, Universität zu Köln, 2002.Google Scholar
  2. 2.
    E. Reingold and J. Tilford. Tidier drawings of trees. IEEE Transactions on Software Engineering, 7(2):223–228, 1981.CrossRefGoogle Scholar
  3. 3.
    B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification and parallelization. In Proceedings of the Third Aegean Workshop on Computing, volume 319 of Lecture Notes in Computer Science, pages 111–123, 1988.Google Scholar
  4. 4.
    K. Supowit and E. Reingold. The complexity of drawing trees nicely. Acta Informatica, 18(4):377–392, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Walker II. A node-positioning algorithm for general trees. Software-Practice and Experience, 20(7):685–705, 1990.CrossRefGoogle Scholar
  6. 6.
    C. Wetherell and A. Shannon. Tidy drawings of trees. IEEE Transactions on Software Engineering, 5(5):514–520, 1979.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Michael Jünger
    • 1
  • Sebastian Leipert
    • 2
  1. 1.Institut für InformatikUniversität zu KölnKölnGermany
  2. 2.caesar research centerBonnGermany

Personalised recommendations