Some Applications of Orderly Spanning Trees in Graph Drawing

  • Ho-Lin Chen
  • Chien-Chih Liao
  • Hsueh-I Lu
  • Hsu-Chun Yen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

Orderly spanning trees seem to have the potential of becoming a new and promising technique capable of unifying known results as well as deriving new results in graph drawing. Our exploration in this paper provides new evidence to demonstrate such a potential. Two applications of the orderly spanning trees of plane graphs are investigated. Our first application deals with Podevs drawing, i.e., planar orthogonal drawing with equal vertex size, introduced by Fößmeier and Kaufmann. Based upon orderly spanning trees, we give an algorithm that produces a Podevs drawing with half-perimeter no more than [3n/2] + 1 and at most one bend per edge for any n-node plane graph with maximal degree Δ, a notable improvement over the existing results in the literature in terms of the size of the drawing area. The second application is an alternative proof for the sufficient and necessary condition for a graph to admit a rectangular dual, i.e., a floor-plan using only rectangles.

References

  1. 1.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers, 49(8):826–840, 2000.CrossRefGoogle Scholar
  2. 2.
    T. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In Proceedings of the 5th European Symposium on Algorithms, Lecture Notes in Computer Science 1284, pages 37–52. Springer-Verlag, 1997.Google Scholar
  3. 3.
    T. Biedl, B. Madden, and I. Tollis. The three-phase method: A unified approach to orthogonal graph drawing. International Journal of Computational Geometry and Applications, 10(6):553–580, 2000.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Bonichon, B. Le Saëc, and M. Mosbah. Orthogonal drawings based on the stratification of planar graphs. In Proceedings of the 6th International Conference on Graph Theory, Electronic Notes in Discrete Math 5, Marseille, France, 2000. Elsevier. A full version can be found at http://citeseer.nj.nec.com/bonichon00orthogonal.html.
  5. 5.
    Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, Washington, D. C., USA, 7–9 Jan. 2001. A revised and extended version can be found at http://xxx.lanl.gov/abs/cs.DS/0102006.
  6. 6.
    M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. International Journal of Computational Geometry & Applications, 7(3):211–223, 1997.CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Chrobak and T. H. Payne. A linear-time algorithm for drawing a planar graph on a grid. Information Processing Letters, 54(4):241–246, May 1995.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. di Battista, P. Eades, R. Tammassia, and I. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1998.Google Scholar
  11. 11.
    M. Eiglsperger and M. Kaufmann. Fast compaction for orthogonal drawings with vertices of prescribed size. In Mutzel et al. [27], pages 124–138.Google Scholar
  12. 12.
    U. Fö\meier, G. Kant, and M. Kaufmann. 2-visibility drawings of planar graphs. In S. North, editor, Proceedings of the 4th International Symposium on Graph Drawing, Lecture Notes in Computer Science 1190, pages 155–168, California, USA, 1996. Springer-Verlag.Google Scholar
  13. 13.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In S. Whitesides, editor, Proceedings of the 3th International Symposium on Graph Drawing, Lecture Notes in Computer Science 1027, pages 254–266, Passau, Germany, 1995. Springer-Verlag. A full version: Technical Report WSI-95-21, Wilhelm-Schickard-Institut Universität Tübingen, 1995.Google Scholar
  14. 14.
    R. L. Francis and J. A. White. Facility layout and location. Prentice-Hall, New Jersey, 1974.Google Scholar
  15. 15.
    X. He. On floor-plan of plane graphs. SIAM Journal on Computing, 28(6):2150–2167, 1999.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    X. He. A simple linear time algorithm for proper box rectangular drawings of plane graphs. Journal of Algorithms, 40(1):82–101, 2001.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    O. H. Ibarra and L. Zhang, editors. Proceedings of the 8th International Conference on Computing and Combinatorics, Lecture Notes in Computer Science 2387, Singapore, August 15–17 2002. Springer.Google Scholar
  18. 18.
    G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science, 172(1–2):175–193, 1997.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    K. Koźmiński and E. Kinnen. Rectangular duals of planar graphs. Networks, 15(2):145–157, 1985.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    K. A. Kózmiński and E. Kinnen. Rectangular dualization and rectangular dissections.IEEE Transactions on Circuits and Systems, 35(11):1401–1416, 1988.CrossRefMATHGoogle Scholar
  22. 22.
    Y. T. Lai and S. M. Leinwand. A theory of rectangular dual graphs. Algorithmica, 5(4):467–483, 1990.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning via orderly spanning trees. In Mutzel et al. [27], pages 367–377.Google Scholar
  24. 24.
    H.-I. Lu. Improved compact routing tables for planar networks via orderly spanning trees. In Ibarra and Zhang [17], pages 57–66.Google Scholar
  25. 25.
    K. Mailing, S. H. Mueller, and W. R. Heller. On finding most optimal rectangular package plans. In Proceedings of the 19th Annual IEEE Design Automation Conference, pages 263–270, 1982.Google Scholar
  26. 26.
    M. Mosbah, N. Bonichon, and B. Le Saëc. Wagner’s theorem on realizers. In M. Hennessy and P. Widmayer, editors, Proceedings of the 29th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 1443, pages 1043–1063, Málaga, Spain, 2002. Springer-Verlag.Google Scholar
  27. 27.
    P. Mutzel, M. Jünger, and S. Leipert, editors. Proceedings of the 9th International Symposium on Graph Drawing, Lecture Notes in Computer Science 2265, Vienna, Austria, 2001. Springer.Google Scholar
  28. 28.
    P. Mutzel and R. Weiskircher. Bend minimization in orthogonal drawings using integer programming. In Ibarra and Zhang [17], pages 484–493.Google Scholar
  29. 29.
    R. Otten. Efficient floorplan optimization. In Proceedings of International Conference on Computer Design, pages 499–503, Port Chester, New York, 1983.Google Scholar
  30. 30.
    A. Papakostas and I. G. Tollis. Efficient orthogonal drawings of high degree graphs. Algorithmica, 26(1):100–125, 2000.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. S. Rahman, S. Nakano, and T. Nishizeki. Box-rectangular drawings of plane graph. In Proceedings of the 21st Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science 1272, pages 250–261. Springer-Verlag, 1999.Google Scholar
  32. 32.
    W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.Google Scholar
  33. 33.
    N. Sherwani. Algorithms for VLSI physical design automation. Kluwer Academic Publishers, 1995.Google Scholar
  34. 34.
    L. Stockmeyer. Optimal orientation of cells in slicing FLoorplan designs. Information and Control, 57(2):91–101, 1983.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    S. Tsukiyama, K. Koike, and I. Shirakawa. An algorithm to eliminate all complex triangles in a maximal planar graph for use in VLSI floorplan. In Proceedings of the IEEE International Symposium on Circuits and Systems, pages 321–324, 1986.Google Scholar
  37. 37.
    K.-H. Yeap and M. Sarrafzadeh. Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM Journal on Computing, 22(3):500–526, 1993.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ho-Lin Chen
    • 1
  • Chien-Chih Liao
    • 1
  • Hsueh-I Lu
    • 2
  • Hsu-Chun Yen
    • 1
  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaiwanRepublic of China
  2. 2.Institute of Information ScienceAcademia SinicaTaiwanRepublic of China

Personalised recommendations