Two New Heuristics for Two-Sided Bipartite Graph Drawing

  • Matthew Newton
  • Ondrej Sýkora
  • Imrich Vrt’o
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

Two new heuristic strategies are studied based on heuristics for the linear arrangement problem and a stochastic hill-climbing method for the two-sided bipartite crossing number problem. These are compared to the standard heuristic for two-sided bipartite drawing based on iteration of the barycentre method. Our experiments show that they can efficiently find good solutions.

References

  1. 1.
    Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Drawing Graphs, Methods and Models (eds. Kaufmann, M., Wagner D.), LNCS 2025, Springer (2001) 87–118CrossRefGoogle Scholar
  2. 2.
    Boisvert, R., Pozo, R., Remington, K., Barrett, R., Dongarra, J.: Matrix Market: a web resource for test matrixcollections. In: The Quality of Numerical Software: Assessment and Enhancement (ed. Boisvert, R.), Chapman and Hall, London, (1997) 125–137, MatrixMark et is available at the url: http://math.nist.gov/MatrixMarket/ Google Scholar
  3. 3.
    Dresbach, S.: A new heuristic layout algorithm for DAGs. In: Operations Research Proceedings 1994 (eds. Derigs, U., Drexl, A.B.A.), Springer (1994) 121–126Google Scholar
  4. 4.
    Demetrescu, C., Finocchi, I.: Removing cycles for minimizing crossings. J. Experimental Algorithmics, to appearGoogle Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualization of Graphs. Prentice Hall (1999)Google Scholar
  6. 6.
    Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars Combin. 21 (1986) 89–98MathSciNetGoogle Scholar
  7. 7.
    Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 11 (1994) 379–403MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM J. Algebraic Disc. Meth. 4 (1983) 312–316MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Juvan, M., Mohar, B.: Optimal linear labellings and eigenvalues of graphs. Discrete Appl. Math. 36 (1992) 153–168MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jünger, M., Mutzel, P.: 2-Layer straight line crossing minimization: Performance of exact and heuristic algorithms. J. Graph Algorithms Appl., 1 (1997) 1–25MathSciNetGoogle Scholar
  11. 11.
    Knuth, D.E.: The Stanford GraphBase: A platform for combinatorial computing. Addision-Wesley, (1993)Google Scholar
  12. 12.
    Koren, Y., Harel, D.: A multi-scale algorithm for the linear arrangement problem. In: 28th Intl. Workshop on Graph-Theoretic Concepts in Computer Science (WG’2002), LNCS, Springer (2002), to appearGoogle Scholar
  13. 13.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline crossing minimization. In: 7th Intl. Symp. on Graph Drawing (GD’99), LNCS 1731, Springer (1999) 217–224Google Scholar
  14. 14.
    Mutzel, P.: Optimization in leveled graphs. In: Pardalos, M., Floudas C.A. (eds.): Encyclopedia of Optimization. Kluwer, Dordrecht (2001)Google Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing. Second edition, Cambridge University Press (1992) http://www.nr.com/
  16. 16.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: 5th Intl. Symp. on Graph Drawing (GD’97), LNCS 1353, Springer (1998) 248–261Google Scholar
  17. 17.
    Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw Hill, (1996)Google Scholar
  18. 18.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrťo, I.: On bipartite drawings and the linear arrangement problem. SIAM J. Computing 30 (2001), 1773–1789MATHCrossRefGoogle Scholar
  19. 19.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrťo, I.: A new lower bound for the bipartite crossing number with algorithmic applications. Theoretical Computer Science 245 (2000) 281–294MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics SMC-11 (1981) 109–125MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Matthew Newton
    • 1
  • Ondrej Sýkora
    • 1
  • Imrich Vrt’o
    • 2
  1. 1.Department of Computer ScienceLoughborough UniversityLeicestershire LoughboroughUK
  2. 2.Institute of MathematicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations