Crossing Reduction by Windows Optimization

  • Thomas Eschbach
  • Wolfgang Günther
  • Rolf Drechsler
  • Bernd Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

The number of edge crossings is a commonly accepted measure to judge the “readability” of graph drawings. In this paper we present a new algorithm for high quality multi-layer straight-line crossing minimization. The proposed method uses a local optimization technique where subsets of nodes and edges are processed exactly. The algorithm uses optimization on a window applied in a manner, similar to those used in the area of formal verification of logic circuits. In contrast to most existing heuristics, more than two layers are considered simultaneously. The algorithm tries to reduce the total number of crossings based on an initial placement of the nodes and can thus also be used in a post- processing step. Experiments are given to demonstrate the efficacy of the proposed technique on benchmarks from the area of circuit design.

References

  1. 1.
    G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for Drawing Graphs: An annotated bibliography. Computational Geometry: Theory and Applications, 4:235–282,1994.MATHMathSciNetGoogle Scholar
  2. 2.
    F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential Benchmark Circuits. Int’l Symp. Circ. and Systems, 1924–1934,1989.Google Scholar
  3. 3.
    R. Drechsler, W. Günther, L. Linhard, and G. Angst. Level Assignment for Displaying Combinational Logic. In EUROMICRO, 148–151,2001.Google Scholar
  4. 4.
    P. Eades, and D. Kelly. Heuristics for reducing crossings in 2-layered networks. Ars Combin., 21.A:89–98,1986.MathSciNetGoogle Scholar
  5. 5.
    P. Eades, and K. Sugiyama. How to draw a Directed Graph. Journal of Information Processing, Vol.13,4,424–437,1991.Google Scholar
  6. 6.
    M. Fujita, Y. Matsunaga, and T. Kakuda. On Variable Ordering of Binary Decision Diagrams for the Application of Multi-Level Synthesis. European Conf. on Design Automation, 50–54,1991.Google Scholar
  7. 7.
    M. R. Garey, and D.S. Johnson. Crossing number is NP-Complete. SIAM Journal on Algebraic and Discrete Methods, 4:312–316,1983.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Günther, R. Schönfeld, B. Becker, and P. Molitor. K-Layer Straightline Crossing Minimization by Speeding up Sifting. Proceedings of the 8th International Symposium on Graph Drawing, 253–258,2000.Google Scholar
  9. 9.
    N. Ishiura, H. Sawada, and S. Yajima. Minimization of Binary Decision Diagrams Based on Exchange of Variables. Int’l Conf. on CAD, 472–475,1991.Google Scholar
  10. 10.
    M. Jünger, E.K. Lee, P. Mutzel, and T. Odenthal. A Polyhedral Approach to the Multi-Layer Crossing Number Problem. Proceedings of the 5th International Symposium on Graph Drawing, LNCS Vol. 1353,13–24,1997.Google Scholar
  11. 11.
    M. Jünger and P. Mutzel. 2-Layer Straightline Crosing Minimization: Performance of Exact and Heuristic Algorithms. J. Graph Agorithms Appl., 1(1):1–25,1997.Google Scholar
  12. 12.
    M. Laguna, R. Martí, and V. Valls. Arc Crossing Minimization in Hierarchical Digraphs with Tabu Search. Computers and Operations Research, Vol. 24,2:1175–1186,1997.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Mäkinen. Experiments on drawing 2-level hierarchical graphs. International Journal of Computer and Mathematics, 36:175–181,1990.CrossRefMATHGoogle Scholar
  14. 14.
    E. Mäkinen. How to draw a hypergraph. International Journal of Computer and Mathematics, 34:177–185,1990.CrossRefMATHGoogle Scholar
  15. 15.
    C. Matuszewski, R. Schönfeld, and P. Molitor. Using Sifting for k-Layer straightline crossing minimization. Proceedings of the 7th International Symposium on Graph Drawing, LNCS 1731,217–224,1999.Google Scholar
  16. 16.
    K. McElvain Benchmark Set: Version 4.0. International Workshop on Logic Synthesis, 1993.Google Scholar
  17. 17.
    K. Mehlhorn, and S. Näher. LEAD: A Platform for Combinatorial and Geometric Computing. Communications of the ACM, 38,1:96–102,1995.CrossRefGoogle Scholar
  18. 18.
    P. Mutzel. An Alternative Method for Crossing Minimization on Hierarchical Graphs. SIAM Journal on Optimization,11,4, 1065–1080,2001.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    P. Mutzel, C. Gutwenger, R. Brockenauer, S. Fialko, G. W. Klau, M. Krüger, T. Ziegler, S. Näher, D. Alberts, D. Ambras, G. Koch, M. Jünger, C. Buchheim, and S. Leipert. AGD: A Library of Algorithms for Graph Drawing. Proceedings of the 6th International Symposium on Graph Drawing, LNCS 1547,456–457,1998.Google Scholar
  20. 20.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE Transaction on Systems, Man and Cybernetics, 11(2):109–125,1981.MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Warfield. Crossing Theory and Hierarchy Mapping. IEEE Transactions on System, Man, and Cybernetics, SMC-7,7,502–523,1977.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Thomas Eschbach
    • 1
  • Wolfgang Günther
    • 2
  • Rolf Drechsler
    • 3
  • Bernd Becker
    • 1
  1. 1.Institute for Computer ScienceAlbert-Ludwigs-UniversityFreiburgGermany
  2. 2.Infineon AG CL DAT DF LD VMunichGermany
  3. 3.Institute for Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations