Applying Crossing Reduction Strategies to Layered Compound Graphs

  • Michael Forster
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

We present a new method for the application of 2-layer crossing reduction algorithms to layered compound graphs.It is based on an algorithm by Sander [9], [7], [8] and improves it with fewer crossings.Our method is optimal in the sense that it does not introduce unnecessary crossings by itself.If used with an optimal 2-layer crossing reduction algorithm, the crossing reduction for 2-layer compound graphs is optimal, too.

References

  1. 1.
    Ralf Brockenauer and Sabine Cornelsen. Drawing clusters and hierarchies. In Kaufmann and Wagner [6], chapter 8, pages 193–227.Google Scholar
  2. 2.
    Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing. Prentice Hall, 1999.Google Scholar
  3. 3.
    Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11:379–403, 1994.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In Proc. Workshop on Graph Drawing’ 95, pages 337–348.Springer, 1996.Google Scholar
  5. 5.
    Michael Jünger and Petra Mutzel. 2-la yer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Application, 1(1):1–25, 1997.Google Scholar
  6. 6.
    Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, volume 2025 of Lecture Notes in Computer Science.Springer, 2001.MATHGoogle Scholar
  7. 7.
    Georg Sander. Layout of compound directed graphs. Technical Report A/03/96, Universität Saarbrücken, 1996.Google Scholar
  8. 8.
    Georg Sander. Visualisierungstechniken für den Compilerbau. PhD thesis, Universität Saarbrücken, 1996.Google Scholar
  9. 9.
    Georg Sander. Graph layout for applications in compiler construction. Theoretical Computer Science, 217:175–214, 1999.MATHCrossRefGoogle Scholar
  10. 10.
    Falk Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD thesis, Universität Passau, 2001.Google Scholar
  11. 11.
    Falk Schreiber. High quality visualization of biochemical pathways in biopath. In Silico Biology, 2(0006), 2002. http://www.bioinfo.de/isb/2002/02/0006/.
  12. 12.
    Kozo Sugiyama and Kazuo Misue. Visualization of structural information: Automatic drawing of compound digraphs. IEEE Trans. Systems, Man and Cybernetics, 21(4):876–892, 1991.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems, Man and Cybernetics, SMC-11(2):109–125, 1981.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Forster
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations