Separating Thickness from Geometric Thickness

  • David Eppstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)


We show that graph-theoretic thickness and geometric thickness are not asymptotically equivalent: for every t, there exists a graph with thickness three and geometric thickness ≥ t.


  1. 1.
    V. B. Alekseev and V. S. Gončakov. The thickness of an arbitrary complete graph. Math USSR Sbornik 30(2):187–202, 1976.CrossRefGoogle Scholar
  2. 2.
    L. W. Beineke. The decomposition of complete graphs into planar subgraphs. Graph Theory and Theoretical Physics, chapter 4, pp. 139–153. Academic Press, 1967.Google Scholar
  3. 3.
    L. W. Beineke and F. Harary. The thickness of the complete graph. Canad. J. Math. 17:850–859, 1965.MATHMathSciNetGoogle Scholar
  4. 4.
    F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Combinatorial Theory, Ser. B 27(3):320–331, 1979.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness of complete graphs. J. Graph Algorithms & Applic ations 4(3):5–17, 2000, http://arXiv:math.CO/9910185.MATHMathSciNetGoogle Scholar
  6. 6.
    D. Eppstein. Separating geometric thickness from book thickness., September 2001, http://arXiv:math.CO/0109195.
  7. 7.
    I. Fáry. On straight line representation of planar graphs. Acta Sci. Math. Szeged. 11:229–233, 1948.Google Scholar
  8. 8.
    R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. Wiley, 1980.Google Scholar
  9. 9.
    N. Hartsfield and G. Ringel. Pearls in Graph Theory. Academic Press, Boston, MA, 1990.MATHGoogle Scholar
  10. 10.
    B. Jackson and G. Ringel. Plane constructions for graphs, networks, and maps: Measurements of planarity. Selected Topics in Operations Research and Mathematical Economics: Proc. 8th Symp. Operations Research, pp. 315–324. Springer-Verlag, Lecture Notes in Economics and Mathematical Systems 226, August 1983.Google Scholar
  11. 11.
    P. C. Kainen. Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg 39:88–95, 1973.MATHMathSciNetGoogle Scholar
  12. 12.
    A. Mansfield. Determining the thickness of a graph is NP-hard. Math. Proc. Cambridge Philos. Soc. 93(9):9–23, 1983.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Mayer. Decomposition de K 16 en trois graphes planaires. J. Comb. Th., Ser. B 13:71, 1972.CrossRefMATHGoogle Scholar
  14. 14.
    J. Vasak. The thickness of the complete graph having 6m+4p oints. Manuscript, cited in [9] and [10].Google Scholar
  15. 15.
    D. R. Wood. Geometric thickness in a grid of linear area. Proc. Euroconf. Combinatorics, Graph Theory, and Applications, pp. 310–315. Univ. Autònoma de Barcelona, Centre de Recerca Matemàtica, September 2001,

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Dept. of Information and Computer ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations