An Efficient Fixed Parameter Tractable Algorithm for 1-Sided Crossing Minimization

  • Vida Dujmović
  • Sue Whitesides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

We give an Ok · n2) algorithm for the 1-Sided Crossing Minimization problem, thus showing that the problem is Fixed Parameter Tractable. The constant ø in the running time is the golden ratio \( \phi = \frac{{1 + \sqrt 5 }} {2} \approx 1.618 \) . The constant k is the parameter of the problem: the number of alloweded ge crossings.

References

  1. 1.
    M. J. Carpano. Automatic display of hierarchized graphs for computer aided decision analysis. IEEE Trans. Syst. Man Cybern., SMC-10(11):705–715, 1980.CrossRefGoogle Scholar
  2. 2.
    C. Catarci. The assignment heuristic for crossing reduction. IEEE Trans. on Systems, Man, and Cybernetics, 25(3), 1995.Google Scholar
  3. 3.
    T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.Google Scholar
  4. 4.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.Google Scholar
  5. 5.
    R. G. Downey and M. R. Fellows. Parametrized complexity. Springer, 1999.Google Scholar
  6. 6.
    S. Dresbach. A new heuristic layout algorithm for directed acyclic graphs. In U. Derigs, A. Bachem, and A. B. A. Drexl, editors, Operations Research Proceedings (1994), pages 121–126. Springer, 1995.Google Scholar
  7. 7.
    V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R. Wood. A fixed-parameter approach to two-layer planarization. In Mutzel [15], pages 1–15.Google Scholar
  8. 8.
    V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R. Wood. On the parameterizedcomplexit y of layeredgraph drawing. In Proc. 9th European Symposium on Algorithms (ESA 2001), volume 2161 of Lecture Notes in Comput. Sci., pages 488–499. Springer, 2001.Google Scholar
  9. 9.
    P. Eades and D. Kelly. Heuristics for drawing 2-layered networks. Ars Combin., 21(A):89–98, 1986.MathSciNetGoogle Scholar
  10. 10.
    P. Eades and S. Whitesides. Drawing graphs in two layers. Theoret. Comput. Sci., 131(2):361–374, 1994.CrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379–403, 1994.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods, 4(3):312–316, 1983.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance of exact andheuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997.MathSciNetGoogle Scholar
  14. 14.
    X Muñoz, U Unger, and I Vrťo. One sidedcrossing minimization is np-hardfor sparse graphs. In Mutzel [15]. to appear.Google Scholar
  15. 15.
    P. Mutzel, editor. Proc. Graph Drawing: 9th International Symposium (GD’01), volume 2265 of Lecture Notes in Comput. Sci. Springer, 2001.Google Scholar
  16. 16.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–125, 1981.MathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Tomii, Y. Kambayashi, and S. Yajima. On planarization algorithms of 2-level graphs. Papers of tech. group on elect. comp., IECEJ, EC77-38:1–12, 1977.Google Scholar
  18. 18.
    V. Valls, R. Marti, and P. Lino. A branch andb oundalgorithm for minimizing the number of crossing arcs in bipartite graphs. J. Operational Res., 90:303–319, 1996.CrossRefGoogle Scholar
  19. 19.
    J. N. Warfield. Crossing theory and hierarchy mapping. IEEE Trans. Systems Man Cybernet., SMC-7(7):505–523, 1977.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Vida Dujmović
    • 1
  • Sue Whitesides
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontreal, QuébecCanada

Personalised recommendations