Sketch-Driven Orthogonal Graph Drawing

  • Ulrik Brandes
  • Markus Eiglsperger
  • Michael Kaufmann
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2528)

Abstract

We present an orthogonal graph drawing algorithm that uses a sketchy drawing of the graph as input. While the algorithm produces an orthogonal drawing with few bends in the Kandinsky model it also preserves the general appearance of the sketch. Potential applications for this kind of drawing algorithm include the generation of schematic maps from geographic networks and interactive orthogonal graph drawing.

References

  1. 1.
    U. Brandes. Layout of Graph Visualizations. PhD thesis, University of Konstanz, 1999. http://www.ub.uni-konstanz/kops/volltexte/1999/255/.
  2. 2.
    U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. Proc. Graph Drawing’ 97. Springer LNCS 1353:236–247, 1997.Google Scholar
  3. 3.
    U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. Proc. Algorithms and Computation’ 98. Springer LNCS1533:89–98, 1998.Google Scholar
  4. 4.
    J. Branke. Dynamic graph drawing. In Drawing Graphs: Methods and Models, Springer LNCS Tutorial 2025:228–246, 2001.CrossRefGoogle Scholar
  5. 5.
    S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive-Giotto: An algorithm for interactive orthogonal graph drawing. Proc. Graph Drawing’ 97. Springer LNCS 1353:303–308, 1997.Google Scholar
  6. 6.
    S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms. Journal of Graph Algorithms and Applications, 4(3):47–74, 2000.MATHMathSciNetGoogle Scholar
  7. 7.
    M. Closson, S. Gartshore, J. Johansen, and S. Wismath. Fully dynamic 3-dimensional orthogonal graph drawing. Journal of Graph Algorithms and Applications, 5(2):1–35, 2001.MathSciNetGoogle Scholar
  8. 8.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.Google Scholar
  9. 9.
    H. do Nascimento and P. Eades. User hints for directed graph drawing. Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.Google Scholar
  10. 10.
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. Proc. Compugraphics’ 91, pp. 24–33, 1991.Google Scholar
  11. 11.
    M. Eiglsperger, and M. Kaufmann. Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.Google Scholar
  12. 12.
    R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley, 3rd ed., 2000.Google Scholar
  13. 13.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. Proc. Graph Drawing’ 95. Springer LNCS 1027:254–266, 1996.Google Scholar
  14. 14.
    J. Ignatowicz. Drawing force-directed graphs using Optigraph. Proc. Graph Drawing’ 95. Springer LNCS 1027:333–336, 1996.Google Scholar
  15. 15.
    M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models. Springer LNCS Tutorial 2025, 2001.MATHGoogle Scholar
  16. 16.
    G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. TR 98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  17. 17.
    U. Lauther and A. Stübinger. Generating schematic cable plans using springembedder methods. Proc. Graph Drawing’ 01. Springer LNCS 2265:465–466, 2002.Google Scholar
  18. 18.
    T. Masui. Graphic object layout with interactive genetic algorithms. Proc. IEEE Visual Languages’ 92, pp. 74–87, 1992.Google Scholar
  19. 19.
    X. Mendonça and P. Eades. Learning aesthetics for visualization. Anais do XX Semin’ario Integrado de Software e Hardware, pp. 76–88, 1993.Google Scholar
  20. 20.
    A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. Proc. Graph Drawing’ 95. Springer LNCS 1027:419–430, 1996.Google Scholar
  21. 21.
    G. Paris. Cooperation between interactive actions and automatic drawing in a schematic editor. Proc. Graph Drawing’ 98. Springer LNCS 1547:394–402, 1998.Google Scholar
  22. 22.
    K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. Proc. Graph Drawing’ 96. Springer LNCS 1190:387–394, 1997.Google Scholar
  23. 23.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and automatic layout of graphs. Proc. Graph Drawing’ 01. Springer LNCS 2265:453–454, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Markus Eiglsperger
    • 2
  • Michael Kaufmann
    • 2
  • Dorothea Wagner
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzKonstanz
  2. 2.Wilhelm Schickard Institute for Computer ScienceUniversity of TüngenTüngen

Personalised recommendations