Crossing Minimization for Symmetries

  • Christoph Buchheim
  • Seok Hee Hong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2518)

Abstract

We consider the problem of drawing a graph with a given symmetry such that the number of edge crossings is minimal. We show that this problem is NP-hard, even if the order of orbits around the rotation center or along the reflection axis is fixed. Nevertheless, there is a linear time algorithm to test planarity and to construct a planar embedding if possible. Finally, we devise an O(m log m) algorithm for computing a crossing minimal drawing if inter-orbit edges may not cross orbits, showing in particular that intra-orbit edges do not contribute to the NP-hardness of the crossing minimization problem for symmetries. From this result, we can derive an O(mlogm) crossing minimization algorithm for symmetries with an orbit graph that is a path.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Abelson, S. Hong, and D. Taylor. A group-theoretic method for drawing graphs symmetrically. Technical Report IT-IVG-2002-01, University of Sydney, 2002.Google Scholar
  2. 2.
    D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. Journal of Graph Theory, 17:333–348, 1993.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Buchheim and S. Hong. Crossing minimization for symmetries. Technical Report zaik2002-440, ZAIK, Universität zu Köln, 2002.Google Scholar
  4. 4.
    C. Buchheim and M. Jünger. Detecting symmetries by branch & cut. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing 2001, volume 2265 of Lecture Notes in Computer Science, pages 178–188. Springer-Verlag, 2001.CrossRefGoogle Scholar
  5. 5.
    G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with SPQR-trees. Algorithmica, 15:302–318, 1996.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Eades and X. Lin. Spring algorithms and symmetry. Theoretical Computer Science, 240(2):379–405, 2000.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Garey and D. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.Google Scholar
  8. 8.
    M. Garey and D. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 4:312–316, 1983.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Hong and P. Eades. Drawing planar graphs symmetrically II: Biconnected graphs. Technical Report CS-IVG-2001-01, University of Sydney, 2001.Google Scholar
  10. 10.
    S. Hong and P. Eades. Drawing planar graphs symmetrically III: Oneconnected graphs. Technical Report CS-IVG-2001-02, University of Sydney, 2001.Google Scholar
  11. 11.
    S. Hong and P. Eades. Drawing planar graphs symmetrically IV: Disconnected graphs. Technical Report CS-IVG-2001-03, University of Sydney, 2001.Google Scholar
  12. 12.
    S. Hong, B. McKay, and P. Eades. Symmetric drawings of triconnected planar graphs. In SODA 2002, pages 356–365, 2002.Google Scholar
  13. 13.
    S. Horton. The optimal linear arrangement problem: Algorithms and approximation. PhD thesis, Georgia Institute of Technology, 1997.Google Scholar
  14. 14.
    J. Manning. Geometric Symmetry in Graphs. PhD thesis, Purdue University, 1990.Google Scholar
  15. 15.
    S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization in linear embeddings of graphs. IEEE Transactions on Computers, 39(1):124–127, 1990.CrossRefMathSciNetGoogle Scholar
  16. 16.
    H. Purchase. Which aesthetic has the greatest effect on human understanding? In Giuseppe Di Battista, editor, Graph Drawing’ 97, volume 1353 of Lecture Notes in Computer Science, pages 248–261. Springer-Verlag, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Seok Hee Hong
    • 2
  1. 1.Institut für InformatikUniversität zu KölnGermany
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia

Personalised recommendations