Casting a Polyhedron with Directional Uncertainty

  • Hee-Kap Ahn
  • Otfried Cheong
  • René van Oostrum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2518)

Abstract

Casting is a manufacturing process in which molten material is poured into a cast (mould), which is opened after the material has solidified. As in all applications of robotics, we have to deal with imperfect control of the casting machinery. In this paper, we consider directional uncertainty: given a 3-dimensional polyhedral object, is there a polyhedral cast such that its two parts can be removed in opposite directions with uncertainty α without inflicting damage to the object or the cast parts? We give a necessary and sufficient condition for castability, and a randomized algorithm that verifies castability and produces two polyhedral cast parts for a polyhedral object of arbitrary genus. Its expected running time is O(n logn). The resulting cast parts have O(n) vertices in total. We also consider the case where the removal direction is not specified in advance, and give an algorithm that finds all feasible removal directions with uncertainty α in expected time O(n2 logn2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-K. Ahn, M. de Berg, P. Bose, S.-W. Cheng, D. Halperin, J. Matousek, and O. Schwarzkopf. Separating an object from its cast. Computer-Aided Design, 34:547–559, 2002.CrossRefGoogle Scholar
  2. 2.
    H.-K. Ahn, S.-W. Cheng, and O. Cheong. Casting with skewed ejection direction. In Proc. 9th Annu. Internat. Sympos. Algorithms Comput., volume 1533 of Lecture Notes Comput. Sci., pages 139–148. Springer-Verlag, 1998.Google Scholar
  3. 3.
    M. de Berg, K. Dobrindt, and O. Schwarzkopf. On lazy randomized incremental construction. Discrete Comput. Geom., 14:261–286, 1995.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.MATHGoogle Scholar
  5. 5.
    P. Bose, D. Bremner, and M. van Kreveld. Determining the castability of simple polyhedra. Algorithmica, 19:84–113, 1997.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Elliott. Cast iron technology. Butterworths, London, UK, 1988.Google Scholar
  7. 7.
    R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes Comput. Sci. Springer-Verlag, 1989.Google Scholar
  8. 8.
    R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. Theory Appl., 3:157–184, 1993.MATHMathSciNetGoogle Scholar
  9. 9.
    J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.Google Scholar
  10. 10.
    T. Lozano-Pérez, M. T. Mason, and R. Taylor. Automatic synthesis of fine-motion strategies for robots. Internat. J. Robot. Res., 3:3–24, 1984.CrossRefGoogle Scholar
  11. 11.
    M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete Comput. Geom., 12:327–345, 1994.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    C. F. Walton and T. J. Opar, editors. Iron castings handbook. Iron Casting Society, Inc., 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Otfried Cheong
    • 2
  • René van Oostrum
    • 2
  1. 1.Imaging Media Research Center, Korea Institute of Science & TechnologyCheongRyang, SeoulSouth Korea
  2. 2.Institute of Information & Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations