NTIF: A General Symbolic Model for Communicating Sequential Processes with Data

  • Hubert Garavel
  • Frédéric Lang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2529)

Abstract

One central problem in the computer-aided verification of concurrent systems consisting of communicating sequential processes with data is to find suitable symbolic models. Such models should provide a compact computer representation for control and data flows, and should be appropriate for mainstream verification techniques such as model checking and theorem proving. A number of symbolic models have been proposed, many of which based on the guarded commands (also known as condition/action) paradigm. In this paper, we draw attention to the limitations of this paradigm and propose a better model named Ntif (New Technology Intermediate Form), which is well-adapted to compiling high-level, concurrent languages (such as the recent E-Lotos standard). Finally, we present two software tools developed for Ntif and report about the use of Ntif for modeling two embedded applications in smart cards.

References

  1. 1.
    G. Berry, G. Gonthier. The Esterel Synchronous Programming Language: Design, Semantics, Implementation. Science Of Computer Programming, 19(2), 1992.Google Scholar
  2. 2.
    M. Bezem, J. Groote. Invariants in Process Algebra with Data. Proc. CONCUR’94, LNCS 836.Google Scholar
  3. 3.
    M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, L. Mounier. IF: An Intermediate Representation and Validation Environment for Timed Asynchronous Systems. Proc. FM’99, LNCS 1708.Google Scholar
  4. 4.
    M. Bozga, S. Graf, L. Mounier. IF-2.0: A Validation Environment for Component-Based Real-Time Systems Proc. CAV’2002, LNCS 2404.Google Scholar
  5. 5.
    S. Budkowski, P. Dembinski. An Introduction to Estelle: A Specification Language for Distributed Systems. Computer Networks and ISDN Systems, 14(1), 1988.Google Scholar
  6. 6.
    CEPSCO. Common Electronic Purse Specification-Technical Specification version 2.3, 1999. http://www.cepsco.com/.
  7. 7.
    D. Clarke, T. Jéron, V. Rusu, E. Zinovieva. STG: A Symbolic Test Generation Tool. Proc. TACAS’2002, LNCS 2280.Google Scholar
  8. 8.
    H. Garavel, F. Lang, R. Mateescu. An Overview of CADP 2001. Technical Report RT 254, INRIA, 2001.Google Scholar
  9. 9.
    H. Garavel, F. Lang, R. Mateescu. Compiler Construction using LOTOS NT. Proc. Compiler Construction 2002, LNCS 2304.CrossRefGoogle Scholar
  10. 10.
    H. Garavel, J. Sifakis. Compilation and Verification of LOTOS Specifications. Proc. PSTV’90. North-Holland.Google Scholar
  11. 11.
    J. Groote, M. Reniers. Algebraic Process Verification. Proc. Handbook of Process Algebra, chapter 17. North Holland, 2001.Google Scholar
  12. 12.
    M. Hennessy, M. Lin. Symbolic Bisimulations. Theoretical Computer Science, 138, 1995.Google Scholar
  13. 13.
    G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5), 1997.Google Scholar
  14. 14.
    ISO/IEC. LOTOS-A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour. International Standard 8807, 1989.Google Scholar
  15. 15.
    ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437, 2001.Google Scholar
  16. 16.
    G. Karjoth. Implementing LOTOS Specifications by Communicating State Machines. Proc. CONCUR’92, LNCS 630.Google Scholar
  17. 17.
    N. Lynch, M. Tuttle. An Introduction to I/O automata. CWI-Quarterly, 2(3), 1989.Google Scholar
  18. 18.
    E.-R. Olderog. Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science 23. Cambridge University Press, 1991.Google Scholar
  19. 19.
    J.-P. Queille. Le systeme CESAR: description, spécification et analyse des applications réparties. Université Scientifique et Médicale de Grenoble (Grenoble, France) 1982.Google Scholar
  20. 20.
    W. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers. Concurrency Veri.cation-Introduction to Compositional and Noncompositional Methods, Cambridge Tracts in Theoretical Computer Science 54. 2001.Google Scholar
  21. 21.
    V. Rusu, L. du Bousquet, T. Jéron. An Approach to Symbolic Test Generation. Proc. IFM’00, LNCS 1945.Google Scholar
  22. 22.
    J.-P. Schwartz. QUASAR, une réalisation du système CESAR: description, spécification et analyse des applications réparties. Thèse de Doctorat, Institut National Polytechnique de Grenoble (France), 1983.Google Scholar
  23. 23.
    M. Sighireanu. Contribution á la définition et á l’implémentation du langage “Extended LOTOS”. Thèse de Doctorat, Université Joseph Fourier (Grenoble, France), 1999.Google Scholar
  24. 24.
    M. Sighireanu. LOTOS NT User’s Manual (Version 2.1). INRIA projet VASY. ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, 2000.
  25. 25.
    D. Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri Nets, LNCS 369. 1989.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hubert Garavel
    • 1
  • Frédéric Lang
    • 1
  1. 1.Inria Rhône-Alpes / VasyMontbonnot Saint-MartinFrance

Personalised recommendations