Advertisement

A Process Knowledge-Based Controller for Maneuverability Improvement of a Nonlinear Industrial Process

  • Salvador Carlos De Lara Jayme
  • Raul Garduño Ramírez
  • Marino Sánchez Parra
  • Luis Castelo Cuevas
  • Marco R. Antonio Carretero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2527)

Abstract

This paper is concerned with the formulation of a process knowledge based controller (PKBC) for maneuverability improvement of non-linear processes operation. The capacity for empirical knowledge acquisition from artificial intelligence systems was utilized in the development of the strategy. The PKBC is a neuro-fuzzy system obtained from process data. The GT 5001 type is the selected nonlinear process, for speed control during startup operation, where the GT has to follow a specific speed path that imposes tight regulation requirements for the control system, including fast response and precision. The proposed control strategy is a feedforward-feedback one. In the feedback path a PID controller is used. In the feedforward path a PKBC provides most of the control signal for wide-range operation, diminishing the control effort on the PID controller. Simulation tests were carried on a dynamic mathematical model of the GT, and demonstrate the maneuverability improvement concerning the startup speed response.

Keywords

Fuzzy System Feedforward Control Artificial Intelligence System Inlet Guide Vane Dynamic Mathematical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Babuska, H. B. Verbruggen and H. Hellendoorn. “Promising Fuzzy Modeling and Control Methodologies for Industrial Applications”. Proceedings European Symposium on Intelligent Techniques ESIT’99, AB-02, Crete, Greece, June 1999.Google Scholar
  2. 2.
    Garduno-Ramirez, Raul, and Sanchez-Parra, Marino. “Control System Modernization: Turbogas Unit Case Study”, Proceedings of IFAC Symposium on Control of Power Plants and Power Systems, Vol.2, December, 1995, Cancun, Mexico, pp. 245–250.Google Scholar
  3. 3.
    Nauck, D., F. Klawonn, and R. Kruse (1997). Foundations of Neuro-Fuzzy Systems. John Wiley & Sons.Google Scholar
  4. 4.
    Jyh-Shing Roger Jang. “ANFIS: Adaptive-Network-Based Fuzzy Inference System”. IEEE Trans. On Systems, Man and Cybernetics. Vol. 23, no. 3, pp. 665–685, May 1993.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Passino, K. Fuzzy Control. Addison-Wesley Longman, Inc. 1998.Google Scholar
  6. 6.
    Raul Garduno-Ramirez, Kwang Y. Lee. “Wide Range Operation of a Power Unit via Feedforward Fuzzy Control”. IEEE Trans. On Energy Conversion. Vol. 15, No.4, pp. 421–426.December 2000.CrossRefGoogle Scholar
  7. 7.
    Marco Antonio Carretero Reyes, Salvador De Lara Jayme, Raúl Garduño Ramírez and Domitilo Libreros. “Sistema para Desarrollo y Validación de Algoritmos de Control para Turbinas de Gas”. Reunión de Verano de Potencia. RVP’2001. Acapulco, Gro., Mexico. The Institute of Electrical and Electronics Engineers. IEEE Seccion Mexico.Google Scholar
  8. 8.
    Bonissone, P. P., Badami, V., Chiang, K. H., Khedkar, P. S., Marcelle, K. W., Schutten, M. J., “Industrial Applications of Fuzzy Logic at General Electric”. Proc. IEEE, Vol. 83, No.3, March 1995, pp. 450–456.Google Scholar
  9. 9.
    Momoh, J. A. and Tomsovic, K., “Overview and Literature Survey of Fuzzy Set Theory in Power Systems”, IEEE Transactions on Power Systems, Vol. 10, No.3, August 1995, pp. 1676–1690.CrossRefGoogle Scholar
  10. 10.
    Mandani, E. H., “Twenty Years of Fuzzy Control: Experiences Gained and Lessons Learned”, Fuzzy Logic Technology and Applications, Robert Marks, Ed. IEEE Technical Activities Board, pp. 19–24, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Salvador Carlos De Lara Jayme
    • 1
  • Raul Garduño Ramírez
    • 1
  • Marino Sánchez Parra
    • 1
  • Luis Castelo Cuevas
    • 2
  • Marco R. Antonio Carretero
    • 2
  1. 1.Instituto de Investigaciones EléctricasGerencia de Control e InstrumentaciónMorelosMéxico
  2. 2.Instituto Politécnico Nacional (IPN) SEPI-ESIME-IPNUnidad “Adolfo López Mateos”

Personalised recommendations