Towards a Theory Revision Approach for the Vertical Fragmentation of Object Oriented Databases

  • Flavia Cruz
  • Fernanda Baião
  • Marta Mattoso
  • Gerson Zaverucha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2507)

Abstract

The performance of applications on Object Oriented Database Ma-nagement Systems (OODBs) is strongly affected by Distribution Design, which reduces irrelevant data accessed by applications and data exchange among sites. In an OO environment, the Distributed Design is a complex task, and an open research problem. In this work, we present a knowledge-based approach for the vertical fragmentation phase of the distributed design of object-oriented databases. In this approach, we show a Prolog implementation of a vertical fragmentation algorithm, and describe how it can be used as background knowledge for a knowledge discovery/revision process through In-ductive Logic Programming (ILP). The objective of the work is to extend our framework proposed to handle the class fragmentation problem, showing the viability of automatically improving the vertical fragmentation algorithm to produce more efficient fragmentation schemas, using a theory revision system. We do not intend to propose the best vertical fragmentation algorithm. We concentrate here on the process of revising a vertical fragmentation algorithm through knowledge discovery techniques, rather than only obtaining a final optimal algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baião, F.: A Methodology and Algorithms for the Design of Distributed Databases using Theory Revision. DSc Thesis, Technical Report ES-547/01, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (2002)Google Scholar
  2. 2.
    Baião, F., Mattoso, M., Zaverucha, G.: A Knowledge-Based Perspective of the Distributed Design of Object Oriented Databases. Proc. Int. Conf. on Data Mining 1998. WIT Press, Rio de Janeiro, Brazil (1998) 383–400Google Scholar
  3. 3.
    Navathe, S., Ra, M.: Vertical Partitioning for Database Design: A Graphical Algorithm. Proc. of the 1989 ACM SIGMOD. Portland, Oregon (1989) 440–450Google Scholar
  4. 4.
    Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical Partitioning Algorithms for Database Design. ACM Trans. Database Systems, Vol. 9(4) (1984) 680–710CrossRefGoogle Scholar
  5. 5.
    Ezeife, C, Barker, K.: Distributed Object Based Design: Vertical Fragmentation of Classes. Int. J. of Distribute and Parallel Databases, Vol. 6(4) (1998) 317–350CrossRefGoogle Scholar
  6. 6.
    Bellatreche, L., Simonet, A., Simonet, M.: Vertical Fragmentation in Distributed Object Database Systems with Complex Attributes and Methods. 7th International Workshop on Database and Expert Systems Applications, Zurich, Switzerland (1996) 15–21Google Scholar
  7. 7.
    Carey, M., De Witt, D., Naughton, J.: The 007 Benchmark.. In: Proc. of 1993 ACM SIGMOD, Washington DC (1993) 12–21Google Scholar
  8. 8.
    Chen, Y., Su, S.: Implementation and Evaluation of Parallel Query Processing Algorithms and Data Partitioning Heuristics in Object Oriented Databases. Distributed and Parallel Databases, Vol. 4(2) (1996) 107–142Google Scholar
  9. 9.
    Karlapalem, K., Navathe, S., Morsi, M.: Issues in Distribution Design of Object-Oriented Databases. In: Özsu, M. et. al (eds): Distributed Object Management, Morgan Kaufman Publishers (1994)Google Scholar
  10. 10.
    Malinowski, E.: Fragmentation Techniques for Distributed Object-Oriented Databases. MSc. Thesis, University of Florida (1996)Google Scholar
  11. 11.
    Mitchell, T.: Machine Learning. McGraw-Hill Companies Inc. (1997)Google Scholar
  12. 12.
    Özsu, M., Valduriez, P.: Principles of Distributed Database Systems. 2nd edn. Prentice-Hall, New Jersey (1999)Google Scholar
  13. 13.
    Lavrac, N., Dzreroski, S.: Inductive Logic Programming: Techniques and Applications, Ellis Horwood (1994)Google Scholar
  14. 14.
    Blockeel, H., de Raedt, L.: Inductive Database Design. In: Proceedings of the International Symposium on Methodologies for Intelligent Systems (ISMIS’96). Lecture Notes in Artificial Intelligence, Vol. 1079. Springer-Verlag (1996) 376–385Google Scholar
  15. 15.
    Towell, G., Shavlik, J.: Knowledge-Based Artificial Neural Networks. Artificial Intelligence, 70(1–2) (1994) 119–165MATHCrossRefGoogle Scholar
  16. 16.
    Garcez, A. S., Zaverucha, G.: The Connectionist Inductive Learning and Logic Programming System. Applied Intelligence Journal, Vol. 11(1) (1999) 59–77CrossRefGoogle Scholar
  17. 17.
    Getoor, L., Taskar, B., Koller, D.: Selectivity Estimation using Probabilistic Models. In: Proc. of the 2001 ACM SIGMOD. Santa Barbara, Califórnia, USA (2001) 461–472Google Scholar
  18. 18.
    Getoor, L., Friedman, N., Koller, D., Taskar, B.: Probabilistic Models of Relational Structure. In: Proc. of the Int. Conf. on Machine Learning, Williamstown, MA (2001)Google Scholar
  19. 19.
    Blockeel, H., De Raedt, L.: IsIdd: an Interactive System for Inductive Database Design. Applied Artificial Intelligence 12(5) (1998) 385–420CrossRefGoogle Scholar
  20. 20.
    Navathe, S., Karlapalem, K., Ra, M.: A Mixed Fragmentation Methodology for Initial Distributed Database Design. J. of Computer and Software Engineering, Vol. 3(4) (1995)Google Scholar
  21. 21.
    Provost, F., Hennessy, D.: Scaling-Up: Distributed Machine Learning with Cooperation. In: Proceedings of AAAI. AAAI Press, Portland, Oregon (1996) 74–79Google Scholar
  22. 22.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming, Vol. 19(20) (1994) 629–679CrossRefMathSciNetGoogle Scholar
  23. 23.
    Richards, B., Mooney, R.: Refinement of First-Order Horn-Clause Domain Theories. Machine Learning, Vol. 19(2) (1995) 95–131Google Scholar
  24. 24.
    Baião, F., Mattoso, M., Zaverucha, G.: A Distribution Design Methodology for Object DBMS. Submitted in Aug 2000; revised manuscript sent in Nov 2001 to International Journal of Distributed and Parallel Databases. Kluwer Academic Publishers (2001)Google Scholar
  25. 25.
    Baião, F., Mattoso, M., Zaverucha, G.: Towards an Inductive Design of Distributed Object Oriented Databases. In: Proc. of the Third IFCIS Conference on Cooperative Information Systems (CoopIS’98). IEEE CS Press, New York, USA, Ago (1998) 88–197Google Scholar
  26. 26.
    Baião, F., Mattoso, M., Zaverucha, G.: Horizontal Fragmentation in Object DBMS: New Issues and Performance Evaluation. In: Proc. of the 19th IEEE Int. Performance, Computing and Communications Conf.. IEEE CS Press, Phoenix (2000)108–114Google Scholar
  27. 27.
    Wrobel, S.: First Order Theory Refinement. In: L. De Raedt (ed.): Advances in Inductive Logic Programming. IOS Press, Amsterdam (1996)Google Scholar
  28. 28.
    Basilio, R., Zaverucha, G., Barbosa, V.: Learning Logic Programs with Neural Networks. 11th Int. Conf. on Inductive Logic Programming (ILP). Lectures Notes in Artificial Intelligence, Vol. 2157. Springer-Verlag, Strasbourg, France (2001) 15–26CrossRefGoogle Scholar
  29. 29.
    Ruberg, G.: A Cost Model for Query Processing in Distributed Object Databases, MSc Thesis, COPPE, Federal University of Rio de Janeiro, Brazil (in Portuguese) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Flavia Cruz
    • 1
  • Fernanda Baião
    • 1
  • Marta Mattoso
    • 1
  • Gerson Zaverucha
    • 1
  1. 1.Department of Computer Science - COPPE/UFRJRio de Janeiro, RJBrazil

Personalised recommendations