How Planning Becomes Improvisation? — A Constraint Based Approach for Director Agents in Improvisational Systems

  • Márcia Cristina Moraes
  • Antônio Carlos da Rocha Costa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2507)


The aim of this paper is to explain how planning becomes improvisation for agents represented through animated characters that can interact with the user. Hayes-Roth and Doyle [10] proposed some changes in the view of intellectual skills traditionally studied as components of artificial intelligence. One of these changes is that planning becomes improvisation. They pointed out that like people in everyday life, animated characters rarely will have enough information, time, motivation, or control to plan and execute extended courses of behavior. Animated characters must improvise, engaging in flexible give-and-take interactions in the here-and-now. In this paper we present an approach to that change. We propose that planning can be understood as improvisation under external constraints. In order to show how this approach can be used, we present a multi-agent architecture for improvisational theater, focusing on the improvisational director’s processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agre, P. E.: The Dynamic Structure of Everyday Life. Phd Thesis, MIT Artificial Intelligence Laboratory, Technical Report 1085 (1988)Google Scholar
  2. 2.
    Agre, P. E.: Computation and Human Experience. Cambridge University Press (1997)Google Scholar
  3. 3.
    Agre, P. E., Chapman, D.: Pengi: An Implementation of a Theory of Activity. Sixth National Conference on Artificial Intelligence. Morgan Kaufmann Publishers. Vol. (1987) 268–272Google Scholar
  4. 4.
    Agre, P. E., Chapman, D.: What are plans for?. MIT A.I. Memo 1050. (1988)Google Scholar
  5. 5.
    Anderson, J. E.: Constraint Directed Improvisation for Everyday Activities. Phd Thesis University of Manitoba. (1995)Google Scholar
  6. 6.
    Bates, J.: The Nature of Characters in Interactive Worlds and The Oz Project. Carnegie Mellon University, Technical Report CMU-CS-92-200. (1992)Google Scholar
  7. 7.
    Brooks, R.: Elephants Don’t Play Chess. Robotics and Autonomous Systems, Vol. 6 (1990) 3–15CrossRefGoogle Scholar
  8. 8.
    Chacra, S.: Natureza e Sentido da Improvisação Teatral. Editora Perspectiva. (1983)Google Scholar
  9. 9.
    Frost, A., Yarrow, R.: Improvisation in Drama. MacMillan Education Ltd. (1990)Google Scholar
  10. 10.
    Hayes-Roth, B., Doyle, P.: Animated Characters. In: Autonomous Agents and Multi-Agent Systems, Vol. 1, Kluwer Academic Publishers, (1998) 195–230CrossRefGoogle Scholar
  11. 11.
    Hayes-Roth, B., Rousseau, D.: A Social-Psychological Model for Synthetic Actors. Stanford University, Technical Report KSL 97-07. (1997)Google Scholar
  12. 12.
    Hayes-Roth, B., Rousseau, D.: Improvisational Synthetic Actors with Flexible Personalities. Stanford University, Technical Report KSL 97-10. (1997)Google Scholar
  13. 13.
    Kumar, V.: Algorithms for Constraint Satisfaction Problems: A Survey. AI Magazine. Spring 1992, (1992) 32–44Google Scholar
  14. 14.
    Loyall, B.: Believable Agents: Building Interactive Personalities. PhD Thesis Carnegie Mellon University, Technical Report CMU-CS-97-123. (1997)Google Scholar
  15. 15.
    Marriott, K., Stuckey, P. J.: Programming with Constraints: An Introduction. MIT Press, Cambridge Massachusets (1998)MATHGoogle Scholar
  16. 16.
    Moraes, M. C, Bertoletti, A. C, Costa, A. C. R.: Estudo e Avaliação da Usabilidade de Agentes Improvisacionais de Interface. IV Workshop de Interfaces Homem-Computador. Brazil (2001)Google Scholar
  17. 17.
    Moraes, M. C, Bertoletti, A. C, Costa, A. C. R.: Evaluating Usability of SAGRES Virtual Museum Considering Ergonomie Aspects and Virtual Guides. 7th World Conference on Computers in Education: Networking the Learner. Denmark (2001)Google Scholar
  18. 18.
    Moraes, M. C, Bertoletti, A. C, Costa, A. C. R.: Virtual Guides to Assist Visitors in the SAGRES Virtual Museum. XIX Int. Conf. of Chilean Computer Science Society. (1999)Google Scholar
  19. 19.
    Pfleger, K., Hayes-Roth, B.: Using Abstract Plans to Guide Behavior. Stanford University, Technical Report KSL 98-02. (1998)Google Scholar
  20. 20.
    Pfleger, K., Hayes-Roth, B.: Plans Should Abstractly Describe Intended Behavior. In Alex Meystel, Jim Albus, and R. Quintero (eds.): Intelligent Systems: A Semiotic Perspective, Proceedings of the 1996 International Multidisciplinary Conference, Vol. 1 (1996)29–34Google Scholar
  21. 21.
    Pollack, M. E.: The use of plans. Artificial Intelligence, Vol. 57. Elsevier Science Publishers (1992) 43–68CrossRefMathSciNetGoogle Scholar
  22. 22.
    Rich, E.: Artificial Intelligence. MacGraw-Hill Company: New York. (1983)Google Scholar
  23. 23.
    Spolin, V.: Improvisation for the Theater: A Handbook of Teaching and Directing Techniques. 1st edn. Nothwestern University Press (1963)Google Scholar
  24. 24.
    Spolin, V.: Improvisation for the Theater. 3rd edn. Nothwestern University Press (1999)Google Scholar
  25. 25.
    Stefik, M.: Introduction to Knowledge Systems. Morgan Kaufmann Publishers, Inc. San Francisco (1995)Google Scholar
  26. 26.
    Suchman, L. A.: Plans and Situated Actions: The problem of human machine communication. Cambridge: Cambridge University Press (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Márcia Cristina Moraes
    • 1
    • 2
  • Antônio Carlos da Rocha Costa
    • 1
    • 3
  1. 1.PPGC - Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.FACIN - Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.ESIN - Universidade Católica de PelotasPelotasBrazil

Personalised recommendations