Advertisement

Formal Ontology Engineering in the DOGMA Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2519)

Abstract

This paper presents a specifically database-inspired approach (called DOGMA) for engineering formal ontologies, implemented as shared resources used to express agreed formal semantics for a real world domain. We address several related key issues, such as knowledge reusability and shareability, scalability of the ontology engineering process and methodology, efficient and effective ontology storage and management, and coexistence of heterogeneous rule systems that surround an ontology mediating between it and application agents. Ontologies should represent a domain’s semantics independently from “language”, while any process that creates elements of such an ontology must be entirely rooted in some (natural) language, and any use of it will necessarily be through a (in general an agent’s computer) language.

To achieve the claims stated, we explicitly decompose ontological resources into ontology bases in the form of simple binary facts called lexons and into so- called ontological commitments in the form of description rules and constraints. Ontology bases in a logic sense, become “representationless” mathematical objects which constitute the range of a classical interpretation mapping from a first order language, assumed to lexically represent the commitment or binding of an application or task to such an ontology base. Implementations of ontologies become database-like on-line resources in the model-theoretic sense. The resulting architecture allows to materialize the (crucial) notion of commitment as a separate layer of (software agent) services, mediating between the ontology base and those application instances that commit to the ontology. We claim it also leads to methodological approaches that naturally extend key aspects of database modeling theory and practice. We discuss examples of the prototype DOGMA implementation of the ontology base server and commitment server.

Keywords

Description Logic Formal Semantic Ontological Commitment Formal Ontology Knowledge Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechhofer S., Horrocks I., Patel-Schneider P. F., Tessaris S.: A Proposal for a Description Logic Interface. In: Lambrix, P.: Proceedings of the International Workshop on Description Logics, et al (eds.) (1999) 33–36Google Scholar
  2. 2.
    Bench-Capon T. J. M., Malcolm G.: Formalizing Ontologies and Their Relations. In: Proceedings of DEXA’99 (1999) 250–259Google Scholar
  3. 3.
    Chandrasekaran B., and Johnson T. R.: Generic Tasks and Task Structures: History, Critique and New Directions. In David J. M., Krivine J. P., and Simmons R. (Eds.): Second Generation Expert Systems, Springer-Verlag, London (1993) 233–272Google Scholar
  4. 4.
    Clancey W. J.: Model construction operators. Artificial Intelligence 53(1) (1992) 1–115CrossRefMathSciNetGoogle Scholar
  5. 5.
    De Bo J., Jarrar M., Majer Ben., Meersman R.: Ontology-based author profiling of documents. In: Towards Improved Evaluation Measures for Parsing Systems Workshop, Third International Conference on Language Resources and valuation, (2002)Google Scholar
  6. 6.
    Demey, J., Jarrar, M. & Meersman, R.: A Conceptual Markup Language that supports interoperability between Business Rule modeling systems, Proceedings of the Tenth International Conference on Cooperative Information Systems (CoopIS 2002).Google Scholar
  7. 7.
    De Troyer, O. M. F., Meersman, R., Verlinden, P.: RIDL* on the CRIS Case: A Workbench for NIAM. In: Olle T. W., Verrijn-Stuart A. A., Bhabuta L.(eds.): Computerized Assistance during the Information Systems Life Cycle, North-Holland/IFIP Amsterdam (1988) 375–459Google Scholar
  8. 8.
    Daelemans W., Buchholz S., Veenstra J.: Memory-based shallow parsing. In: Proceedings of CoNLL-99, Bergen (1999)Google Scholar
  9. 9.
    Fensel, D.: Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce, Springer Verlag (2001)Google Scholar
  10. 10.
    Fensel D., Horrocks I., van Harmelen F. et al.: OIL in a Nutshell. In: Proceedings of EKAW 2000, Springer-Verlag (2000)Google Scholar
  11. 11.
    Gruber T. R.: Toward principles for the design of ontologies used for knowledge sharing, International Journal of Human-Computer Studies, 43(5/6) (1995)Google Scholar
  12. 12.
    Guarino, N. and Giaretta, P.: Ontologies and Knowledge Bases: Towards a Terminological Clarification. In: Mars, N. (ed.): Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, IOS Press, Amsterdam (1995) 25–32Google Scholar
  13. 13.
    Gomez-Perez, A., Benjamins, R.: Overview of Knowledge Sharing and Reuse Components: Ontologies and Problem-Solving Methods. In: Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Morgan-Kaufmann (1999)Google Scholar
  14. 14.
    Gangemi A., Pisanelli D., Steve G.: Ontology Integration: Experiences with Medical Terminologies. In: Guarino, N.: Formal Ontology in Information Systems, (ed.), IOS Press (1998)Google Scholar
  15. 15.
    Genesereth, M. R., Nilsson, N. J.: Logical Foundation of Artificial Intelligence. Morgan Kaufmann, Los Altos, California (1987)Google Scholar
  16. 16.
    Guarino, N., Welty, C.: Identity, Unity, and Individuality: Towards a Formal Toolkit for Ontological Analysis. In: Werner, H. (ed.): Proceedings of ECAI-2000, IOS Press, Berlin (2000) 219–223Google Scholar
  17. 17.
    Halpin, T.: Information Modelling and Relational Databases. 3rd edn. Morgan-Kaufmann (2001)Google Scholar
  18. 18.
    Iwasaki I., Farquhar A., Fikes, R., Rice, J.: A Web-Based Compositional Modeling System for Sharing of Physical Knowledge. In: Proceedings of IJCAI’97 Conference, Morgan-Kaufmann (1997) 494–500Google Scholar
  19. 19.
    Klein, M., Fensel, D.: Ontology Versioning on the Semantic Web. In: First International Semantic Web Working Symposium (SWWS-1) (2001)Google Scholar
  20. 20.
    Meersman, R. A.: Some Methodology and Representation Problems for the Semantics of Prosaic Application Domains. In: Ras, Z. W., Zemankova, M. (eds.): Methodologies for Intelligent Systems (ISMIS-94), Springer LNAI, Heidelberg (1994)Google Scholar
  21. 21.
    Meersman, R.: Semantic Ontology Tools in Information Systems Design. In: Ras, Z., Zemankova, M. (eds.): Proceedings of the ISMIS’99 Conference. LNCS, Springer Verlag, (1999)Google Scholar
  22. 22.
    McMacrthy, J. “Notes on Formalizing Context”. In: Proceedings of IJCAI’93, Morgan-Kaufmann, (1993).Google Scholar
  23. 23.
    Motta, E., Fensel, D., Gaspari, M. and Benjamins, R.,: Specifications of Knowledge Components for Reuse. In: Proceedings of the 11th International Conference on Software Engineering and Knowledge Engineering. KSI Press, Kaiserslautern Germany (1999) 36–43Google Scholar
  24. 24.
    Da Nobrega G. M., Castro E., Malbos P., Sallantin J., Cerri S. A.: A framework for supervised conceptualizing. In: ECAI’00. (2000) 17.1–17.4Google Scholar
  25. 26.
    Patil R.S., Fikes R.E., Patel-Schneider P.F., McKay D., Finin T., Gruber T., Neches R.: The DARPA Knowledge Sharing Effort: Progress Report. In: Proc. of Knowledge Representation and Reasoning (1992) 777–788Google Scholar
  26. 27.
    Richards. D.: The Reuse of Knowledge: A User-Centered Approach, International Journal of Human Computer Studies (2000)Google Scholar
  27. 28.
    Reiter, R.: Towards a Logical Reconstruction of Relational Database Theory. In: Mylopoulos, J., Brodie, M. L. (eds.): Readings in AI and Databases. Morgan Kaufman (1988)Google Scholar
  28. 29.
    Sowa, J. F.: Ontology, metadata, and semiotics. In: Ganter, B., Mineau, G. W., (eds): Conceptual structures: logical, linguistic and computational issues: 8th international conference on conceptual structures. ICCS 2000, Darmstadt Germany, August 2000 (Lecture Notes in Artificial Intelligence, 1867), Springer-Verlag Berlin (2000) 55–81Google Scholar
  29. 30.
    Steels, L.: The componential framework and its role in reusability. In: David, J.-M., Krivine, J.-P., Simmons, R. (eds.): Second Generation Expert Systems. Springer-Verlag Berlin (1993) 273–298Google Scholar
  30. 31.
    Steve G., Gangemi A., Pisanelli D. M.: Integrating Medical Terminologies with the ONIONS Methodology. In: Kangassalo H., Charrel J. P. (eds.): Information Modelling and Knowledge Bases VIII. IOS Press Amsterdam (1998)Google Scholar
  31. 32.
    Swartout, W. R., Moore, J. D.: Explanation in Second Generation Expert Systems. In:David, J.-M., Krivine, J.-P., Simmons, R. (eds): Second Generation Expert Systems. Springer-Verlag Berlin (1993)Google Scholar
  32. 33.
    Stuer, P., Meersman, R., De Bruyne, S.: The HyperMuseum Theme Generator System: Ontology-based Internet support for the active use of digital museum data for teaching and presentation. In Bearman, D. & Trant, J. (eds.): Museums and the Web 2001. Selected Papers, Archives & Museum Informatics, pp.127–137, (2001)Google Scholar
  33. 34.
    Uschold, M. and Gruninger, M.: Ontologies: principles, methods and applications, The Knowledge Engineering Review, vol. 11, no. 2, June (1996).Google Scholar
  34. 35.
    Verheyen, G., van Bekkum, P.: NIAM, An Information Analysis Method. In: Olle, T. W., Sol, H., Verrijn-Stuart, A. (eds.): IFIP Conference on Comparative Review of Information Systems Methodologies. North-Holland (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.VUB STARLabVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations