A Defeasible Ontology Language

  • S. Heymans
  • D. Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2519)

Abstract

We extend the description logic SHOQ(D) with a preference order on the axioms. With this strict partial order certain axioms can be overruled, if defeated with more preferred ones. Furthermore, we impose a preferred model semantics, thus effectively introducing nonmonotonicity into SHOQ(D). Since a description logic can be viewed as an ontology language, or a proper translation of one, we obtain a defeasible ontology language. Finally, we argue that such a defeasible language may be usefully applied for learning and integrating ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Baader, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors. Description Logic Handbook, chapter 2, pages 47–100. Cambridge University Press, 2002.Google Scholar
  2. [2]
    F. Baader and U. Sattler. Tableau algorithms for description logics. In R. Dyckhoff, editor, Proceedings of the International Conference on Automated Reasoning with Tableaux and Related Methods (Tableaux 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages 1–18, St Andrews, Scotland, UK, 2000. Springer-Verlag.Google Scholar
  3. [3]
    Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept languages. Technical Report RR-91-10, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, 1991.Google Scholar
  4. [4]
    Franz Baader and Bernhard Hollunder. Embedding defaults into terminological knowledge representation formalisms. In Bernhard Nebel, Charles Rich, and William Swartout, editors, KR’92. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pages 306–317, San Mateo, California, 1992. Morgan Kaufmann.Google Scholar
  5. [5]
    Franz Baader and Bernhard Hollunder. How to prefer more specific defaults in terminological default logic. In Ruzena Bajcsy, editor, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pages 669–674, San Mateo, California, 1993. Morgan Kaufmann.Google Scholar
  6. [6]
    S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not enough. In Proceedings of the First Semantic Web Working Symposium (SWWS’01), pages 151–159. CEUR, 2001.Google Scholar
  7. [7]
    Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a reason-able ontology editor for the semantic web. In Proceedings of KI2001, Joint German/Austrian conference on Artificial Intelligence, number 2174 in Lecture Notes in Computer Science, pages 396–408, Vienna, September 2001. Springer-Verlag.Google Scholar
  8. [8]
    T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, pages 34–43, May 2001.Google Scholar
  9. [9]
    A. Borgida and R. Küsters. What’s not in a name: Some Properties of a Purely Structural Approach to Integrating Large DL Knowledge Bases. In F. Baader and U. Sattler, editors, Proceedings of the International Workshop on Description Logics (DL2000), number 33 in CEUR-WS, 2000.Google Scholar
  10. [10]
    S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein, and S._Melnik. The SemanticWeb-on the respective roles of XML and RDF. IEEE Internet Computing, September-October 2000.Google Scholar
  11. [11]
    D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a Nutshell. In R. Dieng et al., editor, Knowledge Acquisition, Modeling, and Management, Proceedings of the European Knowledge Acquisition Conference (EKAW-2000), Lecture Notes in Artificial Intelligence. Springer-Verlag, 2000.Google Scholar
  12. [12]
    D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.CrossRefGoogle Scholar
  13. [13]
    D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. sceptical semantics for ordered logic programs. In Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pages 208–217. Morgan Kaufmann, 1991.Google Scholar
  14. [14]
    P. Geerts and D. Vermeir. Defeasible logics. In D. M. Gabbay and P. Smets, editors, Handbook of defeasible reasoning and uncertainty management systems, volume 2, pages 175–210. Kluwer Academic Press, 1998.Google Scholar
  15. [15]
    J.C. Hage, H.B. Verheij, and A.R. Lodder. Reason Based Logic; a Logic that Deals with Rules and Reasons. In J.M. Akkermans and J.A. Breuker, editors, Working Papers NAIC’ 93, pages 293–304. 1993.Google Scholar
  16. [16]
    S. Heymans and D. Vermeir. Using Preference Order in Ontologies. 2002. To appear.Google Scholar
  17. [17]
    I. Horrocks. A denotational semantics for Standard OIL and Instance OIL. http://www.ontoknowledge.org/oil/downl/semantics.pdf, 2000.
  18. [18]
    I. Horrocks, D. Fensel, J. Boekstra, S. Decker, M. Erdmann, C. Goble, F. Van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. The ontology inference layer OIL. http://www.cs.vu.nl/~dieter/oil/Tr/oil.pdf, 2000.
  19. [19]
    I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-01), pages 199–204. Morgan Kaufmann, 2001.Google Scholar
  20. [20]
    I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic SHIQ. In David MacAllester, editor, Proc. of the 17th Int. Conf. on Automated Deduction (CADE-17), number 1831 in Lecture Notes In Artificial Intelligence, pages 482–496. Springer-Verlag, 2000.Google Scholar
  21. [21]
    Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive description logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors, Proceedings of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR’99), number 1705, pages 161–180. Springer-Verlag, 1999.Google Scholar
  22. [22]
    E. Laenens and D. Vermeir. A Logical Basis for Object Oriented programming. In J. Siekmann, editor, Logics in AI, number 478 in Lecture notes in Artificial Intelligence, pages 317–332. Springer-Verlag, September 1990.Google Scholar
  23. [23]
    Ora Lassila and Ralph R. Swick. Resource description framework (RDF) model and syntax specification. W3C Recommendation-http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, February 1999.
  24. [24]
    Tom Mitchell. Machine Learning. McGraw-Hill, 1997.Google Scholar
  25. [25]
    N.F. Noy and M.A. Musen. SMART: Automated Support for Ontology Merging and Alignment. In Proceedings of the TwelfthWorkshop on Knowledge Acquisition (KAW’99), Banf, Canada, 1999.Google Scholar
  26. [26]
    J.J. Quantz and M. Ryan. Preferential Default Description Logics. KIT 110, Technische Universität Berlin, 1993.Google Scholar
  27. [27]
    Mark Ryan. Representing Defaults as Sentences with Reduced Priority. In Bernhard Nebel, Charles Rich, and William Swartout, editors, KR’92. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pages 649–660. Morgan Kaufmann, San Mateo, California, 1992.Google Scholar
  28. [28]
    Andrea Schaerf. Reasoning with individuals in concept languages. Data Knowledge Engineering, 13(2):141–176, 1994.CrossRefGoogle Scholar
  29. [29]
    Mike Uschold and Michael Grüninger. Ontologies: principles, methods, and applications. Knowledge Engineering Review, 11(2):93–155, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Heymans
    • 1
  • D. Vermeir
    • 1
  1. 1.Dept. of Computer ScienceFree University of Brussels, VUBBrussels

Personalised recommendations