Ant Colonies for the RCPS Problem

  • Joaquín Bautista
  • Jordi Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2504)

Abstract

Several approaches based on Ant Colony Optimization (ACO) are developed to solve the Resource Constrained Project Scheduling Problem (RCPSP). Starting from two different proposals of the metaheuristic, four different algorithms adapted to the problem characteristics are designed and implemented. Finally the effectiveness of the algorithms are tested comparing its results with those previously found in the literature for a data set used as a the benchmark instance set for the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez-Valdés, R., Tamarit, J.M. (1989) Heuristic algorithms for a resource constrained project scheduling: A review and an empirical analysis, Advances in Project Scheduling, R. Slowinski, J. Weglarz (Ed.). Elsevier, Amsterdam. 1989, pp. 113–134.Google Scholar
  2. 2.
    Baar T., Brucker P., Knust S. (1998) Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem in: S. Voss, S. Martello, I. Osman, C. Roucairol (eds.): Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, 1–18.Google Scholar
  3. 3.
    Bouleimen, K., Lecocq, H. (1998) A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem. Technical Report, Service de Robotique et Automatisation, Université de Liège.Google Scholar
  4. 4.
    Colorni A., Dorigo M, Maniezzo V y Trubian M. (1994) Ant System for job-shop scheduling. JORBEL-Belgian Journal of Operations Research, Statistics and Computer Science, 34(1) 39–53MATHGoogle Scholar
  5. 5.
    Dorigo M. y Gambardella M. (1997) Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1) 53–66.CrossRefGoogle Scholar
  6. 6.
    Dorigo M., Maniezzo V. y Colorni A. (1991) The Ant System: An autocatalytic optimizing process. Thechnical Report 91-016 Revised, Dipartimento di Electronica, Politecnico di Milano, Italy.Google Scholar
  7. 7.
    Dorigo M., Maniezzo V. y Colorni A. (1996) The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man., and Cybernetics-Part B, 26(1) 29–41.CrossRefGoogle Scholar
  8. 8.
    Gambardella L.M., Taillard E.D. y Dorigo M. (1999) Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2) 167–176MATHCrossRefGoogle Scholar
  9. 9.
    Hartmann, S. (1997) A competitive genetic algorithm for resource-constrained project scheduling. Technical Report 451, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel. Google Scholar
  10. 10.
    Hartmann, S., Kolisck, R. (1998) Experimental Evaluation of State of Art Heuristics for the Resource Constrained Project Scheduling Problem. Wp. IBUK, No. 476.Google Scholar
  11. 11.
    Kolisch, R. (1996) Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations Management, 14, 179–192.CrossRefGoogle Scholar
  12. 12.
    Kolisch, R. (1996) Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90, 320–333.MATHCrossRefGoogle Scholar
  13. 13.
    Kolisch, R., Hartmann S. (1998) Heuristic Algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis. Handbook on Recent Advances in Project Scheduling. Kluwer, Amsterdam.Google Scholar
  14. 14.
    Kolisch R., Sprencher A. (1996) PSPLIB-A project scheduling problem library. European Journal of Operational Research, 96. 205–216CrossRefGoogle Scholar
  15. 15.
    Merkle, D., Middedorf M., Schmeck H. (2000) Ant Colony Optimization for Resource Constrained Project Scheduling. GECCO-2000Google Scholar
  16. 16.
    Özdamar, L., Ulusoy, G. (1995) Survey on the resource-constrained project scheduling problem. IIE Transactions, 27-5, 574–586.CrossRefGoogle Scholar
  17. 17.
    Patterson, J.H.. (1984) A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Management Sc., 30-7, 854–867.CrossRefGoogle Scholar
  18. 18.
    Simpson, W.P., Patterson, J.H. (1996) A multiple-tree search procedure for the resource-constrained project scheduling problem. EJOR, 89, 525–542.MATHCrossRefGoogle Scholar
  19. 19.
    Stützle T., Hoos H.H. (1997) The MAX-MIN Ant Syste and local search for the traveling salesman problem. In T.Bäck, Z.Michalewicz and X.Yao, eds., Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), pp. 309–314. IEEE Press, Piscataway NJCrossRefGoogle Scholar
  20. 20.
    Taillard É. D., FANT: Fast ant system, Technical report IDSIA-46-98, IDSIA, Lugano, 1998.Google Scholar
  21. 21.
    Weglarz, J. Ed. (1998) Handbook on Recent Advances in Project Scheduling. Kluwer, Amsterdam.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joaquín Bautista
    • 1
  • Jordi Pereira
    • 1
  1. 1.ETSEIBUniversitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations