The Vascular Endothelium II pp 79-95

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 176/II)

Biomechanical Modulation of Endothelial Phenotype: Implications for Health and Disease

  • G. García-Cardeña
  • M. A. GimbroneJr.

Abstract

The functional phenotypic plasticity of the vascular endothelium relies on the ability of individual endothelial cells to integrate and transduce both humoral and biomechanical stimuli from their surrounding environments. Increasing evidence strongly suggests that biomechanical stimulation is a critical determinant of endothelial gene expression and the functional phenotypes displayed by these cells in several pathophysiological conditions. Herein we discuss the types of biomechanical forces that endothelial cells are constantly exposed to within the vasculature, explain how these biomechanical stimuli serve as regulators of endothelial functionanddiscuss the increasing evidence that “atherosclerosis-protective” or “atherosclerosis-prone” haemodynamic environments can beimportant causative factors for atherogenesis via the differential regulation of endothelial transcriptional programmes.

Keywords

Endothelium Atherosclerosis Haemodynamic forces Transcriptional programmes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066PubMedGoogle Scholar
  2. Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278:2581–2584PubMedCrossRefGoogle Scholar
  3. Berk BC, Corson MA, Peterson TE, Tseng H (1995) Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calciumdependent and calcium-independent events activated by flow. J Biomech 28:1439–1450PubMedCrossRefGoogle Scholar
  4. Blackman BR, Garcia-Cardena G, Gimbrone MA Jr (2002) A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng 124:397–407PubMedCrossRefGoogle Scholar
  5. Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41PubMedGoogle Scholar
  6. Caro CG, Fitz-Gerald JM, Schroter RC (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161PubMedCrossRefGoogle Scholar
  7. Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 177:109–159PubMedCrossRefGoogle Scholar
  8. Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW (1998) Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82:532–539PubMedGoogle Scholar
  9. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7:55–63PubMedCrossRefGoogle Scholar
  10. Chiu JJ, Chen LJ, Chang SF, Lee PL, Lee CI, Tsai MC, Lee DY, Hsieh HP, Usami S, Chien S (2005) Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: role of NF-kappaB. Arterioscler Thromb Vasc Biol 25:963–969PubMedCrossRefGoogle Scholar
  11. Clark CB, McKnight NL, Frangos JA (2002) Strain and strain rate activation of G proteins in human endothelial cells. Biochem Biophys Res Commun 299:258–262PubMedCrossRefGoogle Scholar
  12. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proc Natl Acad Sci U S A 101:14871–14876PubMedCrossRefGoogle Scholar
  13. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560PubMedGoogle Scholar
  14. Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129PubMedCrossRefGoogle Scholar
  15. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83:2114–2117PubMedCrossRefGoogle Scholar
  16. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 82:1094–1101PubMedGoogle Scholar
  17. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, Van Bavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698PubMedCrossRefGoogle Scholar
  18. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618PubMedGoogle Scholar
  19. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185PubMedCrossRefGoogle Scholar
  20. Diamond SL, Eskin SG, McIntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485PubMedCrossRefGoogle Scholar
  21. Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479PubMedCrossRefGoogle Scholar
  22. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A 98:4478–4485PubMedCrossRefGoogle Scholar
  23. Gerszten RE, Luscinskas FW, Ding HT, Dichek DA, Stoolman LM, Gimbrone MA Jr, Rosenzweig A (1996) Adhesion of memory lymphocytes to vascular cell adhesion molecule-1-transduced human vascular endothelial cells under simulated physiological flow conditions in vitro. Circ Res 79:1205–1215PubMedGoogle Scholar
  24. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–9; discussion 239–240PubMedCrossRefGoogle Scholar
  25. Grabowski EF, Reininger AJ, Petteruti PG, Tsukurov O, Orkin RW (2001) Shear stress decreases endothelial cell tissue factor activity by augmenting secretion of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 21:157–162PubMedGoogle Scholar
  26. Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79:834–839PubMedGoogle Scholar
  27. Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 95:2515–2519PubMedCrossRefGoogle Scholar
  28. Helmlinger G, Berk BC, Nerem RM (1995) Calciumresponses of endothelial cellmonolayers subjected to pulsatile and steady laminar flow differ. Am J Physiol 269:C367–C375PubMedGoogle Scholar
  29. Huddleson JP, Srinivasan S, Ahmad N, Lingrel JB (2004) Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region. Biol Chem 385:723–729PubMedCrossRefGoogle Scholar
  30. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627PubMedGoogle Scholar
  31. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302PubMedGoogle Scholar
  32. Kuo CT, Veselits ML, Leiden JM (1997a) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277:1986–1990PubMedCrossRefGoogle Scholar
  33. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997b) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006PubMedGoogle Scholar
  34. Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813PubMedCrossRefGoogle Scholar
  35. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118PubMedCrossRefGoogle Scholar
  36. Mazzolai L, Silacci P, Bouzourene K, Daniel F, Brunner H, Hayoz D (2002) Tissue factor activity is upregulated in human endothelial cells exposed to oscillatory shear stress. Thromb Haemost 87:1062–1068PubMedGoogle Scholar
  37. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 98:8955–8960PubMedCrossRefGoogle Scholar
  38. Mohan S, Mohan N, Valente AJ, Sprague EA (1999) Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am J Physiol 276:C1100–1107PubMedGoogle Scholar
  39. Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, Shibata M, Nakatsuka T, Harii K, Wada Y, Kohro T, Kodama T, Ando J (2003) Global analysis of shear stressresponsive genes in vascular endothelial cells. J Atheroscler Thromb 10:304–313PubMedGoogle Scholar
  40. Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates aK+current in vascular endothelial cells. Nature 331:168–170PubMedCrossRefGoogle Scholar
  41. Ou Y, Garcia-Cardena G, Gimbrone MA Jr (2002) Modulation of nuclear function by biomechanical forces in vascular endothelium. Experimental Biology Meeting, New Orleans. FASEB, abstr 179.6Google Scholar
  42. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA, Garcia-Cardena G (2005a) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116:49–58PubMedCrossRefGoogle Scholar
  43. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA Jr, Garcia-Cardena G (2005b) Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280:26714–26719PubMedCrossRefGoogle Scholar
  44. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Prichard WF, Powell S, Chang GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A 101:2482–2487PubMedCrossRefGoogle Scholar
  45. Peters DG, Zhang XC, Benos PV, Heidrich-O’Hare E, Ferrell RE (2002) Genomic analysis of immediate/early response to shear stress in human coronary artery endothelial cells. Physiol Genomics 12:25–33PubMedGoogle Scholar
  46. Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726PubMedCrossRefGoogle Scholar
  47. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, Garcia-Cardena G, Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315PubMedCrossRefGoogle Scholar
  48. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775PubMedCrossRefGoogle Scholar
  49. Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genesdifferentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively upregulated by steady laminar shear stress. Proc Natl Acad Sci U S A 93:10417–10422PubMedCrossRefGoogle Scholar
  50. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685PubMedGoogle Scholar
  51. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127PubMedCrossRefGoogle Scholar
  52. Wani MA, Wert SE, Lingrel JB (1999) Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J Biol Chem 274:21180–21185PubMedCrossRefGoogle Scholar
  53. Warabi E, Wada Y, Kajiwara H, Kobayashi M, Koshiba N, Hisada T, Shibata M, Ando J, Tsuchiya M, Kodama T, Noguchi N (2004) Effect on endothelial cell gene expression of shear stress, oxygen concentration, and low-density lipoprotein as studied by a novel flow cell culture system. Free Radic Biol Med 37:682–694PubMedCrossRefGoogle Scholar
  54. Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12:13–23PubMedGoogle Scholar
  55. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100:7988–7995PubMedCrossRefGoogle Scholar
  56. Wu J, Srinivasan SV, Neumann JC, Lingrel JB (2005) The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44:11098–11105PubMedCrossRefGoogle Scholar
  57. Yamawaki H, Lehoux S, Berk BC (2003) Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation 108:1619–1625PubMedCrossRefGoogle Scholar
  58. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514PubMedGoogle Scholar
  59. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol 18:686–692PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • G. García-Cardeña
    • 1
  • M. A. GimbroneJr.
    • 1
  1. 1.Center for Excellence in Vascular Biology, Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations