A New Model Reduction Method for Nonlinear Dynamical Systems Using Singular PDE Theory

  • N. Kazantzis
  • C. Kravaris


In the present research study a new approach to the problem of modelreduction for nonlinear dynamical systems is proposed. The formulation of the problem is conveniently realized through a system of singular quasi-linear invariance PDEs, and an explicit set of conditions for solvability is derived. In particular, within the class of real analytic solutions, the aforementioned set of conditions is shown to guarantee the existence and uniqueness of a locally analytic solution, which is then proven to represent the slow invariant manifold of the nonlinear dynamical system under consideration. As a result, an exact reduced-order model for the nonlinear system dynamics is obtained through the restriction of the original system dynamics on the aforementioned slow manifold. The local analyticity property of the solution’s graph that corresponds to the system’s slow invariant manifold enables the development of a series solution method, which allows the polynomial approximation of the “slow” system dynamics on the slow manifold up to the desired degree of accuracy.


Invariant Manifold Model Reduction Nonlinear Dynamical System Slow Manifold Inertial Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin Heidelberg New York 1983)zbMATHGoogle Scholar
  2. 2.
    A. Astolfi, R. Ortega: Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Contr. 48, 590–606 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P.D. Christofides: Nonlinear and Robust Control of PDE Systems (Birkhauser, Boston, MA 2001)zbMATHGoogle Scholar
  4. 4.
    R. Courant, D. Hilbert: Methods of Mathematical Physics, Volume II (John Wiley & Sons, New York 1962)zbMATHGoogle Scholar
  5. 5.
    S.M. Cox, A.J. Roberts: Initial conditions for models of dynamical systems. Physica D 85, 126 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    L.C. Evans: Partial Differential Equations (American Mathematical Society, Providence, RI 1998)zbMATHGoogle Scholar
  7. 7.
    C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, E.S. Titi: On the computation of inertial manifolds. Phys. Lett. A 131, 433 (1989)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    C. Foias, R. Sell, E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative equations. J. Dynam. Diff. Equat 1, 199 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    F.R. Gantmacher: The Theory of Matrices (Chelsea Publishing Company, New York, 1960)zbMATHGoogle Scholar
  10. 10.
    A.N. Gorban, I.V. Karlin: Methods of invariant manifolds and regularization of acoustic spectra. Transp. Theor. Stat. Phys. 23, 559 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    A.N. Gorban, I.V. Karlin, V.B. Zmievskii, S.V. Dymova: Reduced description in the reaction kinetics. Physica A 275, 361 (2000)CrossRefADSGoogle Scholar
  12. 12.
    A.N. Gorban, I.V. Karlin: Method of invariant manifold for chemical kinetics. Chem. Engn. Sci. 58, 4751 (2003)CrossRefGoogle Scholar
  13. 13.
    A.N. Gorban, I.V. Karlin, A.Y. Zinovyev: Constructive methods of invariant manifolds for kinetic problems. Phys. Reports 396, 197 (2004)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    A.N. Gorban, I.V. Karlin: Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, 660 (Springer, Berlin Heidelberg New York 2005)zbMATHGoogle Scholar
  15. 15.
    J. Guckenheimer, P.J. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin Heidelberg New York 1983)zbMATHGoogle Scholar
  16. 16.
    S Jin, M. Slemrod: Regularization of the Burnett equations for rapid granular flows via relaxation. Physica D 150, 207 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    T. Kaper, N. Koppel, C.K.R.T. Jones: Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal. 27, 558 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    N. Kazantzis: Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems. Phys. Lett. A 272, 257 (2000)MathSciNetCrossRefADSzbMATHGoogle Scholar
  19. 19.
    N. Kazantzis, T. Good: Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs Comp. Chem. Eng 26, 999 (2002)CrossRefGoogle Scholar
  20. 20.
    P.V. Kokotovic, H.K. Khaliland, J.O. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press 1986)Google Scholar
  21. 21.
    A. Kumar, P.D. Christofides, P. Daoutidis: Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity Chem. Engn. Sci. 53, 1491 (1998)CrossRefGoogle Scholar
  22. 22.
    G. Li, H. Rabitz: A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Engn. Sci. 49, 343 (1994)CrossRefGoogle Scholar
  23. 23.
    A.M. Lyapunov: The General Problem of the Stability of Motion, (Taylor & Francis Ltd, London 1992).zbMATHGoogle Scholar
  24. 24.
    G. Moore: Geometric methods for computing invariant manifolds. Appl. Numer. Math. 17, 319 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.J. Roberts: Low-dimensional modelling of dynamics via computer algebra. Comp. Phys. Commun. 100, 215 (1997)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    M.R. Roussel: Forced-convergence iterative schemes for the approximation of invariant manifolds. J. Math. Chem. 21, 385 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.R. Roussel, S.J. Fraser: Invariant manifold methods for metabolic model reduction. Chaos 11, 196 (2001)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    S.Y. Shvartsman, I.G. Kevrekidis: Nonlinear model reduction for control of distributed systems: A computer-assisted study. AICHE J. 44, 1579 (1998)CrossRefGoogle Scholar
  29. 29.
    S.Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I.G. Kevrekidis, E.S. Titi, T.J. Mountziaris: Order reduction for nonlinear dynamic models of distributed reacting systems. J. Proc. Contr. 10, 177 (2000)CrossRefGoogle Scholar
  30. 30.
    S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems a nd Chaos (Springer, Berlin Heidelberg New York 1990)Google Scholar
  31. 31.
    A. Zagaris, H.G. Kaper, T.J. Kaper: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonl. Sci. 14, 59 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    V.B. Zmievski, I.V. Karlin, M. Deville: The universal limit in dynamics of dilute polymeric solutions. Physica A 275, 152 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • N. Kazantzis
    • 1
  • C. Kravaris
    • 2
  1. 1.Department of Chemical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations