Multiple Scales in Phase Separating Systems with Elastic Misfit

  • Harald Garcke
  • Martin Lenz
  • Barbara Niethammer
  • Martin Rumpf
  • Ulrich Weikard


Colored Version Spinodal Decomposition Anisotropic Elasticity Elasticity Tensor Eshelby Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ATV01]
    N. Akaiwa, K. Thornton, and P.W. Voorhees. Large-Scale Simulations of Microstructural Evolution in Elastically Stressed Solids. J. Comp. Phys., 173, 61–86, 2001.MATHCrossRefGoogle Scholar
  2. [BGP87]
    M.O. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the Navier-Stokes equations: Applications to the simulation of compressible and incompressible viscous flows. In: Computer Physics Report, Research Report UH/MD-4. University of Houston, 1987.Google Scholar
  3. [CH58]
    J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28, 258–267, 1958.CrossRefGoogle Scholar
  4. [CL73]
    J.W. Cahn and F.C. Larché. A linear theory of thermomechanical equilibrium of solids under stress. Acta Metall., 21, 1051–1063, 1973.CrossRefGoogle Scholar
  5. [CL82]
    J.W. Cahn and F.C. Larché. Surface stress and the chemical equilibrium of single crystals II: solid particles imbedded in a solid matrix. Acta Metall., 30, 51–56, 1982.CrossRefGoogle Scholar
  6. [Cle87]
    D.L. Clements. Green’s Functions for the Boundary Element Method. Boundary Elements IX: Proceedings of the 9th International Conference on Boundary Elements, 1987.Google Scholar
  7. [CR78]
    D.L. Clements and F.J. Rizzo. A Method for the Numerical Solution of Boundary Value Problems Governed by Second-Order Elliptic Systems. J. Inst. Math. Appl., 22, 197–202, 1978.MATHMathSciNetGoogle Scholar
  8. [DM00]
    W. Dreyer and W.H. Müller. A study of the coarsening in tin/lead solders. Int. J. Solids Struct., 37, 381–3871, 2000.Google Scholar
  9. [Dz91]
    G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58, 603–611, 1991.MATHMathSciNetCrossRefGoogle Scholar
  10. [Ell89]
    C.M. Elliott The Cahn-Hilliard model for the kinetics of phase transitions, in Mathematical Models for Phase Change Problems, J.F. Rodrigues (ed.). International Series of Numerical Mathematics, 88, Birkhäuser-Verlag, Basel, 35–73, 1989.Google Scholar
  11. [FPL99]
    P. Fratzl, O. Penrose, and J.L. Lebowitz. Modelling of phase separation in alloys with coherent elastic misfit. J. Stat. Physics, 955/6, 1429–1503, 1999.MATHMathSciNetCrossRefGoogle Scholar
  12. [Ga03a]
    H. Garcke. On Mathematical Models for Phase Separation in Elastically Stressed Solids. Habilitation Thesis 2003Google Scholar
  13. [Ga03b]
    H. Garcke. On Cahn-Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh, 133 A, 307–331, 2003.MathSciNetGoogle Scholar
  14. [GK06]
    H. Garcke and D.J.C. Kwak. On asymptotic limits of Cahn-Hilliard systems with elastic misfit. In “Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke (edr), Springer-Verlag, 2006.”Google Scholar
  15. [GMW03]
    H. Garcke, S. Maier-Paape, and U. Weikard. Spinodal decomposition in the presence of elastic interactions. In: S. Hildebrand, H. Karcher (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer, 2003.Google Scholar
  16. [GN*03]
    H. Garcke, B. Niethammer, M. Rumpf, and U. Weikard. Transient coarsening behaviour in the Cahn-Hilliard model Acta Mat., 51, 2823–2830, 2003.Google Scholar
  17. [GRW01]
    H. Garcke, M. Rumpf, and U. Weikard, The Cahn-Hilliard equation with elasticity: Finite element approximation and qualitative studies. Interfaces and Free Boundaries, 3, 101–118, 2001.MATHMathSciNetGoogle Scholar
  18. [GW05]
    H. Garcke and U. Weikard. Numerical Approximation of the Cahn-Larché equation. Numer. Math., 100, Number 4, 639–662, 2005.MathSciNetCrossRefMATHGoogle Scholar
  19. [Gu72]
    M.E. Gurtin. The Linear Theory of Elasticity. Handbuch der Physik, Vol. VIa/2, Springer, S. Flügge and C. Truesdell (eds.), Berlin, 1972.Google Scholar
  20. [Gu93]
    M.E. Gurtin. Thermomechanics of evolving phase boundaries in the plane. Oxford Mathematical Monographs. New York, 1993.MATHGoogle Scholar
  21. [Ha95]
    W. Hackbusch. Integral Equations. Theory and Numerical Treatment. Birkhäuser 1995.Google Scholar
  22. [JLL97]
    H.-J. Jou, P.H. Leo, and J.S. Lowengrub. Microstructural Evolution in Inhomogeneous Elastic Media. J. Comp. Phys., 132, 109–148, 1997.CrossRefGoogle Scholar
  23. [Kha83]
    A.G. Khachaturyan. Theory of Structural Transformations in Solids. Wiley, New York, 1983.Google Scholar
  24. [KO02]
    R.V. Kohn and F. Otto. Upper bounds for coarsening rates. Comm. Math. Phys., 229, 375–395, 2002.MATHMathSciNetCrossRefGoogle Scholar
  25. [LLJ98]
    P.H. Leo, J.S. Lowengrub, and H.J. Jou. A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater., 46, 2113–2130, 1998.CrossRefGoogle Scholar
  26. [MK94]
    N. Masbaum and T. Küpper. Simulation of particle growth and Ostwald ripening via the Cahn-Hilliard equation. Acta Metallurgica et Materialia, 42, No.6, 1847–1858, 1994.CrossRefGoogle Scholar
  27. [MU94]
    S. Müller-Urbaniak. Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 des SF 359, 1994.Google Scholar
  28. [Pe89]
    R.L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London, Ser. A 422, no. 1863, 261–278, 1989.MATHMathSciNetCrossRefGoogle Scholar
  29. [Tay78]
    J.E. Taylor. Crystalline variational problems. Bull. Amer. Math. Soc., 84(4), 568–588, 1978.MATHMathSciNetCrossRefGoogle Scholar
  30. [TAV04a]
    K. Thornton, N. Akaiwa, and P.W. Voorhees. Large-scale simulations of Ostwald ripening in elastically stressed solids. I. Development of Microstructure. Acta Materialia, 52, 1353–1364, 2004.CrossRefGoogle Scholar
  31. [TAV04b]
    K. Thornton, N. Akaiwa, and P.W. Voorhees. Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution. Acta Materialia, 52, 1365–1378, 2004.CrossRefGoogle Scholar
  32. [VMJ92]
    P.W. Voorhees, G.B. McFadden, and W.C. Johnson. On the morphological development of second phase particles in elastically stressed solids. Acta Metall., 40, 2979–2992, 1992.CrossRefGoogle Scholar
  33. [Wei02]
    U. Weikard. Numerische Lösungen der Cahn-Hilliard-Gleichung und der Cahn-Larché-Gleichung. PhD thesis, Bonn, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Harald Garcke
    • 1
  • Martin Lenz
    • 2
  • Barbara Niethammer
    • 3
  • Martin Rumpf
    • 2
  • Ulrich Weikard
    • 4
  1. 1.NWF I — MathematikUniversität RegensburgRegensburg
  2. 2.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonn
  3. 3.Institut für MathematikHumboldt-Universität zu BerlinBerlin
  4. 4.Fachbereich MathematikGerhard-Mercator-Universität DuisburgDuisburg

Personalised recommendations