Multiple Scales in Phase Separating Systems with Elastic Misfit

  • Harald Garcke
  • Martin Lenz
  • Barbara Niethammer
  • Martin Rumpf
  • Ulrich Weikard

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ATV01]
    N. Akaiwa, K. Thornton, and P.W. Voorhees. Large-Scale Simulations of Microstructural Evolution in Elastically Stressed Solids. J. Comp. Phys., 173, 61–86, 2001.MATHCrossRefGoogle Scholar
  2. [BGP87]
    M.O. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the Navier-Stokes equations: Applications to the simulation of compressible and incompressible viscous flows. In: Computer Physics Report, Research Report UH/MD-4. University of Houston, 1987.Google Scholar
  3. [CH58]
    J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28, 258–267, 1958.CrossRefGoogle Scholar
  4. [CL73]
    J.W. Cahn and F.C. Larché. A linear theory of thermomechanical equilibrium of solids under stress. Acta Metall., 21, 1051–1063, 1973.CrossRefGoogle Scholar
  5. [CL82]
    J.W. Cahn and F.C. Larché. Surface stress and the chemical equilibrium of single crystals II: solid particles imbedded in a solid matrix. Acta Metall., 30, 51–56, 1982.CrossRefGoogle Scholar
  6. [Cle87]
    D.L. Clements. Green’s Functions for the Boundary Element Method. Boundary Elements IX: Proceedings of the 9th International Conference on Boundary Elements, 1987.Google Scholar
  7. [CR78]
    D.L. Clements and F.J. Rizzo. A Method for the Numerical Solution of Boundary Value Problems Governed by Second-Order Elliptic Systems. J. Inst. Math. Appl., 22, 197–202, 1978.MATHMathSciNetGoogle Scholar
  8. [DM00]
    W. Dreyer and W.H. Müller. A study of the coarsening in tin/lead solders. Int. J. Solids Struct., 37, 381–3871, 2000.Google Scholar
  9. [Dz91]
    G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58, 603–611, 1991.MATHMathSciNetCrossRefGoogle Scholar
  10. [Ell89]
    C.M. Elliott The Cahn-Hilliard model for the kinetics of phase transitions, in Mathematical Models for Phase Change Problems, J.F. Rodrigues (ed.). International Series of Numerical Mathematics, 88, Birkhäuser-Verlag, Basel, 35–73, 1989.Google Scholar
  11. [FPL99]
    P. Fratzl, O. Penrose, and J.L. Lebowitz. Modelling of phase separation in alloys with coherent elastic misfit. J. Stat. Physics, 955/6, 1429–1503, 1999.MATHMathSciNetCrossRefGoogle Scholar
  12. [Ga03a]
    H. Garcke. On Mathematical Models for Phase Separation in Elastically Stressed Solids. Habilitation Thesis 2003Google Scholar
  13. [Ga03b]
    H. Garcke. On Cahn-Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh, 133 A, 307–331, 2003.MathSciNetGoogle Scholar
  14. [GK06]
    H. Garcke and D.J.C. Kwak. On asymptotic limits of Cahn-Hilliard systems with elastic misfit. In “Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke (edr), Springer-Verlag, 2006.”Google Scholar
  15. [GMW03]
    H. Garcke, S. Maier-Paape, and U. Weikard. Spinodal decomposition in the presence of elastic interactions. In: S. Hildebrand, H. Karcher (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer, 2003.Google Scholar
  16. [GN*03]
    H. Garcke, B. Niethammer, M. Rumpf, and U. Weikard. Transient coarsening behaviour in the Cahn-Hilliard model Acta Mat., 51, 2823–2830, 2003.Google Scholar
  17. [GRW01]
    H. Garcke, M. Rumpf, and U. Weikard, The Cahn-Hilliard equation with elasticity: Finite element approximation and qualitative studies. Interfaces and Free Boundaries, 3, 101–118, 2001.MATHMathSciNetGoogle Scholar
  18. [GW05]
    H. Garcke and U. Weikard. Numerical Approximation of the Cahn-Larché equation. Numer. Math., 100, Number 4, 639–662, 2005.MathSciNetCrossRefMATHGoogle Scholar
  19. [Gu72]
    M.E. Gurtin. The Linear Theory of Elasticity. Handbuch der Physik, Vol. VIa/2, Springer, S. Flügge and C. Truesdell (eds.), Berlin, 1972.Google Scholar
  20. [Gu93]
    M.E. Gurtin. Thermomechanics of evolving phase boundaries in the plane. Oxford Mathematical Monographs. New York, 1993.MATHGoogle Scholar
  21. [Ha95]
    W. Hackbusch. Integral Equations. Theory and Numerical Treatment. Birkhäuser 1995.Google Scholar
  22. [JLL97]
    H.-J. Jou, P.H. Leo, and J.S. Lowengrub. Microstructural Evolution in Inhomogeneous Elastic Media. J. Comp. Phys., 132, 109–148, 1997.CrossRefGoogle Scholar
  23. [Kha83]
    A.G. Khachaturyan. Theory of Structural Transformations in Solids. Wiley, New York, 1983.Google Scholar
  24. [KO02]
    R.V. Kohn and F. Otto. Upper bounds for coarsening rates. Comm. Math. Phys., 229, 375–395, 2002.MATHMathSciNetCrossRefGoogle Scholar
  25. [LLJ98]
    P.H. Leo, J.S. Lowengrub, and H.J. Jou. A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater., 46, 2113–2130, 1998.CrossRefGoogle Scholar
  26. [MK94]
    N. Masbaum and T. Küpper. Simulation of particle growth and Ostwald ripening via the Cahn-Hilliard equation. Acta Metallurgica et Materialia, 42, No.6, 1847–1858, 1994.CrossRefGoogle Scholar
  27. [MU94]
    S. Müller-Urbaniak. Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 des SF 359, 1994.Google Scholar
  28. [Pe89]
    R.L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London, Ser. A 422, no. 1863, 261–278, 1989.MATHMathSciNetCrossRefGoogle Scholar
  29. [Tay78]
    J.E. Taylor. Crystalline variational problems. Bull. Amer. Math. Soc., 84(4), 568–588, 1978.MATHMathSciNetCrossRefGoogle Scholar
  30. [TAV04a]
    K. Thornton, N. Akaiwa, and P.W. Voorhees. Large-scale simulations of Ostwald ripening in elastically stressed solids. I. Development of Microstructure. Acta Materialia, 52, 1353–1364, 2004.CrossRefGoogle Scholar
  31. [TAV04b]
    K. Thornton, N. Akaiwa, and P.W. Voorhees. Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution. Acta Materialia, 52, 1365–1378, 2004.CrossRefGoogle Scholar
  32. [VMJ92]
    P.W. Voorhees, G.B. McFadden, and W.C. Johnson. On the morphological development of second phase particles in elastically stressed solids. Acta Metall., 40, 2979–2992, 1992.CrossRefGoogle Scholar
  33. [Wei02]
    U. Weikard. Numerische Lösungen der Cahn-Hilliard-Gleichung und der Cahn-Larché-Gleichung. PhD thesis, Bonn, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Harald Garcke
    • 1
  • Martin Lenz
    • 2
  • Barbara Niethammer
    • 3
  • Martin Rumpf
    • 2
  • Ulrich Weikard
    • 4
  1. 1.NWF I — MathematikUniversität RegensburgRegensburg
  2. 2.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonn
  3. 3.Institut für MathematikHumboldt-Universität zu BerlinBerlin
  4. 4.Fachbereich MathematikGerhard-Mercator-Universität DuisburgDuisburg

Personalised recommendations