Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review

  • David Cohen
  • Tobias Jahnke
  • Katina Lorenz
  • Christian Lubich


Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with time- or state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more detail.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGG87]
    G. Benettin, L. Galgani & A. Giorgilli, Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I, Comm. Math. Phys. 113 (1987) 87–103.MATHMathSciNetCrossRefGoogle Scholar
  2. [BF28]
    M. Born, V. Fock, Beweis des Adiabatensatzes, Zs. Physik 51 (1928) 165–180.MATHCrossRefGoogle Scholar
  3. [Bor98]
    F. Bornemann, Homogenization in Time of Singularly Perturbed Mechanical Systems, Springer LNM 1687 (1998).Google Scholar
  4. [BN*96]
    F. A. Bornemann, P. Nettesheim, B. Schmidt, & C. Schütte, An explicit and symplectic integrator for quantum-classical molecular dynamics, Chem. Phys. Lett., 256 (1996) 581–588.CrossRefGoogle Scholar
  5. [BS99]
    F. A. Bornemann, C. Schütte, On the singular limit of the quantum-classical molecular dynamics model, SIAM J. Appl. Math., 59 (1999) 1208–1224.MATHMathSciNetCrossRefGoogle Scholar
  6. [Coh04]
    D. Cohen, Analysis and numerical treatment of highly oscillatory differential equations, Doctoral Thesis, Univ. de Genève (2004).Google Scholar
  7. [Coh06]
    D. Cohen, Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems, IMA J. Numer. Anal. 26 (2006) 34–59.MATHMathSciNetCrossRefGoogle Scholar
  8. [CHL03]
    D. Cohen, E. Hairer & C. Lubich, Modulated Fourier expansions of highly oscillatory differential equations, Found. Comput. Math. 3 (2003) 327–345.MATHMathSciNetCrossRefGoogle Scholar
  9. [CHL05]
    D. Cohen, E. Hairer & C. Lubich, Numerical energy conservation for multifrequency oscillatory differential equations, BIT 45 (2005) 287–305.MATHMathSciNetCrossRefGoogle Scholar
  10. [DS03]
    I. Degani & J. Schiff, RCMS: Right correction Magnus series approach for integration of linear ordinary differential equations with highly oscillatory solution, Report, Weizmann Inst. Science, Rehovot, 2003.Google Scholar
  11. [Deu79]
    P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions, Z. angew. Math. Phys. 30 (1979) 177–189.MATHMathSciNetCrossRefGoogle Scholar
  12. [E03]
    W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations, Comm. Math. Sci. 1 (2003) 423–436.MATHMathSciNetGoogle Scholar
  13. [ET05]
    B. Engquist & Y. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations, Math. Comp. 74 (2005) 1707–1742.MATHMathSciNetCrossRefGoogle Scholar
  14. [FL06]
    E. Faou & C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics, Report, 2004. To appear in Comp. Vis. Sci.Google Scholar
  15. [GSS99]
    B. García-Archilla, J. Sanz-Serna, R. Skeel, Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput. 20 (1999) 930–963.MATHMathSciNetCrossRefGoogle Scholar
  16. [Gau61]
    W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961) 381–397.MATHMathSciNetCrossRefGoogle Scholar
  17. [Gri05a]
    V. Grimm, On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math. 100 (2005) 71–89.MATHMathSciNetCrossRefGoogle Scholar
  18. [Gri05b]
    V. Grimm, A note on the Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 102 (2005) 61–66.MATHMathSciNetCrossRefGoogle Scholar
  19. [GH06]
    V. Grimm & M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations, J. Phys. A 39 (2006)Google Scholar
  20. [GH*91]
    H. Grubmüller, H. Heller, A. Windemuth & K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Sim. 6 (1991) 121–142.Google Scholar
  21. [HL00]
    E. Hairer, C. Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Num. Anal. 38 (2000) 414–441.MATHMathSciNetCrossRefGoogle Scholar
  22. [HLW06]
    E. Hairer, C. Lubich & G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics 31. 2nd ed., 2006.Google Scholar
  23. [HLW03]
    E. Hairer, C. Lubich & G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica (2003) 399–450.Google Scholar
  24. [Hen93]
    J. Henrard, The adiabatic invariant in classical mechanics, Dynamics reported, New series. Vol. 2, Springer, Berlin (1993) 117–235.Google Scholar
  25. [Her58]
    J. Hersch, Contributionà la méthode aux différences, Z. angew. Math. Phys. 9a (1958) 129–180.MATHMathSciNetCrossRefGoogle Scholar
  26. [HL99a]
    M. Hochbruck & C. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 83 (1999) 403–426.MATHMathSciNetCrossRefGoogle Scholar
  27. [HL99b]
    M. Hochbruck & C. Lubich, A bunch of time integrators for quantum/ classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin 1999, 421–432.Google Scholar
  28. [HL99c]
    M. Hochbruck & C. Lubich, Exponential integrators for quantum-classical molecular dynamics, BIT 39 (1999) 620–645.MATHMathSciNetCrossRefGoogle Scholar
  29. [HL03]
    M. Hochbruck & C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003) 945–963.MATHMathSciNetCrossRefGoogle Scholar
  30. [Ise02]
    A. Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT 42 (2002) 561–599.MATHMathSciNetCrossRefGoogle Scholar
  31. [Ise04]
    A. Iserles, On the method of Neumann series for highly oscillatory equations, BIT 44 (2004) 473–488.MATHMathSciNetCrossRefGoogle Scholar
  32. [Jah03]
    T. Jahnke, Numerische Verfahren für fast adiabatische Quantendynamik, Doctoral Thesis, Univ. Tübingen (2003).Google Scholar
  33. [Jah04]
    T. Jahnke, Long-time-step integrators for almost-adiabatic quantum dynamics, SIAM J. Sci. Comput. 25 (2004) 2145–2164.MATHMathSciNetCrossRefGoogle Scholar
  34. [JL03]
    T. Jahnke & C. Lubich, Numerical integrators for quantum dynamics close to the adiabatic limit, Numer. Math. 94 (2003) 289–314.MATHMathSciNetCrossRefGoogle Scholar
  35. [LT05]
    C. Lasser & S. Teufel, Propagation through conical crossings: an asymptotic semigroup, Comm. Pure Appl. Math. 58 (2005) 1188–1230.MATHMathSciNetCrossRefGoogle Scholar
  36. [LR01]
    B. Leimkuhler & S. Reich, A reversible averaging integrator for multiple time-scale dynamics, J. Comput. Phys. 171 (2001) 95–114.MATHMathSciNetCrossRefGoogle Scholar
  37. [LR04]
    B. Leimkuhler & S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics 14, Cambridge University Press, Cambridge, 2004.Google Scholar
  38. [Lor06]
    K. Lorenz, Adiabatische Integratoren für hochoszillatorische mechanische Systeme, Doctoral thesis, Univ. Tübingen (2006).Google Scholar
  39. [LJL05]
    K. Lorenz, T. Jahnke & C. Lubich, Adiabatic integrators for highly oscillatory second order linear differential equations with time-varying eigendecomposition, BIT 45 (2005) 91–115.MATHMathSciNetCrossRefGoogle Scholar
  40. [Net00]
    P. Nettesheim, Mixed quantum-classical dynamics: a unified approach to mathematical modeling and numerical simulation, Thesis FU Berlin (2000).Google Scholar
  41. [NR99]
    P. Nettesheim & S. Reich, Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin (1999) 412–420.Google Scholar
  42. [NS99]
    P. Nettesheim & C. Schütte, Numerical integrators for quantum-classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin (1999) 412–420.Google Scholar
  43. [PJY97]
    L. R. Petzold, L. O. Jay & J. Yen, Numerical solution of highly oscillatory ordinary differential equations, Acta Numerica 7 (1997) 437–483.MathSciNetCrossRefGoogle Scholar
  44. [Rei99]
    S. Reich, Multiple time scales in classical and quantum-classical molecular dynamics, J. Comput. Phys. 151 (1999) 49–73.MATHMathSciNetCrossRefGoogle Scholar
  45. [RU57]
    H. Rubin & P. Ungar, Motion under a strong constraining force, Comm. Pure Appl. Math. 10 (1957) 65–87.MATHMathSciNetGoogle Scholar
  46. [Tak80]
    F. Takens, Motion under the influence of a strong constraining force, Global theory of dynamical systems, Proc. Int. Conf., Evanston/Ill. 1979, Springer LNM 819 (1980) 425–445.MATHMathSciNetGoogle Scholar
  47. [TBM92]
    M. Tuckerman, B.J. Berne & G.J. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97 (1992) 1990–2001.CrossRefGoogle Scholar
  48. [Zen32]
    C. Zener, Non-adiabatic crossing of energy levels, Proc. Royal Soc. London, Ser. A 137 (1932) 696–702.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Cohen
    • 1
  • Tobias Jahnke
    • 2
  • Katina Lorenz
    • 1
  • Christian Lubich
    • 1
  1. 1.Mathematisches InstitutUniviversität TübingenTübingen
  2. 2.Institut für Mathematik II, BioComputing GroupFreie Universität BerlinBerlin

Personalised recommendations