Advertisement

Domain Walls and Vortices in Thin Ferromagnetic Films

  • Matthias Kurzke
  • Christof Melcher
  • Roger Moser

Keywords

Domain Wall Domain Wall Motion Asymptotic Regime Wall Mass Magnetostatic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABS94]
    G. Alberti, G. Bouchitté, and P. Seppecher, Un résultat de perturbations singulières avec la norme H 1/2, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 333–338.zbMATHGoogle Scholar
  2. [ABS98]
    G. Alberti, G. Bouchitté, and P. Seppecher, Phase transition with the linetension effect, Arch. Rational Mech. Anal. 144 (1998), no. 1, 1–46.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [BF*97]
    P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling Waves in a Convolution Model for Phase Transitions, Arch. Rational Mech. Anal. 138 (1997), no. 2, 105–136.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [BBH93]
    F. Bethuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 123–148.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [BBH94]
    F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, Boston, 1994.Google Scholar
  6. [CS04]
    X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), no. 12, 1678–1732.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [CMO06]
    A. Cappella-Kort, C. Melcher, and F. Otto, in preparationGoogle Scholar
  8. [Car01]
    G. Carbou, Thin layers in micromagnetism, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1529–1546.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [DKO05]
    A. DeSimone, H. Knüpfer, and F. Otto, 2-d stability of the Néel wall, SFB 611 Preprint 224, 2005.Google Scholar
  10. [DK*99]
    A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, Magnetic microstructure-a paradigm of multiscale problems, Proceedings of the ICIAM 99 (Edinburgh), Eds. J. M. Ball and J. C. R. Hunt, (1999), 175–199.Google Scholar
  11. [DK*02]
    A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), no. 11, 1408–1460.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [DK*03]
    A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the Cross-tie wall, SIAM Multiscale Model. Simul. 1 (2003), 57–104.zbMATHCrossRefGoogle Scholar
  13. [DK*05]
    A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, Recent analytical developments in micromagnetics, in: The science of hysteresis (G. Bertotti, I. Mayergoyz, eds.), Vol. II, pp. 269–381, Elsevier, 2005.Google Scholar
  14. [Dör48]
    W. Döring, Über die Trägheit der Wände zwischen Weißschen Bezirken, Z. Naturforschung 3a (1948), 373–379.Google Scholar
  15. [EG01]
    W. E and C. J. García-Cervera, Effective dynamics in ferromagnetic thin films, J. Appl. Phys. 90 (2001), no. 1, 370–374.CrossRefGoogle Scholar
  16. [Gra99]
    C. J. Gracía-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New York University, 1999.Google Scholar
  17. [GJ97]
    G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. R. Soc. Lond. Ser. A 453 (1997), 213–223.Google Scholar
  18. [Hof98]
    S. Hofmann, An Off-Diagonal T(1) Theorem and Applications, J. Funct. Analysis 160 (1998), 581–622.zbMATHCrossRefGoogle Scholar
  19. [HS98]
    A. Hubert and R. Schäfer, Magnetic Domains, The Analysis of Magnetic Microstructures, Springer-Verlag, Berlin-Heidelberg-New York, 1998.Google Scholar
  20. [JS98]
    R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), no. 2, 99–125.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [KP88]
    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equation, Comm. Pure Appl. Math 16 (1988), no. 7, 891–907.MathSciNetGoogle Scholar
  22. [KS05a]
    R. V. Kohn and V. V. Slastikov, Effective dynamics for ferromagnetic thin films: a rigorous justification, Proc. R. Soc. Lond. Ser. A 461 (2005), 143–154.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [KS05b]
    R. V. Kohn and V. V. Slastikov, Another thin-film limit of micromagnetics, Arch. Ration. Mech. Anal. 178 (2005), no. 2, 227–245.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [Kur04]
    M. Kurzke, Boundary vortices in thin magnetic films, Preprint 14, Max Planck Institute for Mathematics in the Sciences, 2004, To appear in Calc. Var. PDE.Google Scholar
  25. [Kur05]
    M. Kurzke, The gradient flow motion of boundary vortices, Preprint 2030, IMA, 2005, To appear in Ann. IHP Analyse nonlineaire.Google Scholar
  26. [Kur06]
    M. Kurzke, A nonlocal singular perturbation problem with periodic well potential, ESAIM:COCV 12 (2006), 52–63.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [LL35]
    L. D. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sovietunion 8 (1935), 153–169.zbMATHGoogle Scholar
  28. [Lin96a]
    F. H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), no. 4, 323–359.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [Lin96b]
    F. H. Lin, A remark on the previous paper: “Some dynamical properties of Ginzburg-Landau vortices”, Comm. Pure Appl. Math. 49 (1996), no. 4, 361–364.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [Mel02]
    C. Melcher, Néel walls and regularity in thin film micromagnetics, Dissertation, Universität Leipzig, 2002.Google Scholar
  31. [Mel03]
    C. Melcher, The logarithmic tail of Néel walls, Arch. Rational Mech. Anal. 168 (2003), 83–113.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [Mel04a]
    C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 168 (2004), 209–219.MathSciNetGoogle Scholar
  33. [Mel04b]
    C. Melcher, Domain wall motion in ferromagnetic layers, Physica D 192 (2004), 249–264.zbMATHMathSciNetCrossRefGoogle Scholar
  34. [Mos03]
    R. Moser, Ginzburg-Landau vortices for thin ferromagnetic films, AMRX Appl. Math. Res. Express 2003, no. 1, 1–32.Google Scholar
  35. [Mos04]
    R. Moser, Boundary vortices for thin ferromagnetic films, Arch. Ration. Mech. Anal. 174 (2004), no. 2, 267–300.zbMATHMathSciNetCrossRefGoogle Scholar
  36. [Mos05]
    R. Moser, Moving boundary vortices for a thin-film limit in micromagnetics, Comm. Pure Appl. Math. 58 (2005), no. 5, 701–721.zbMATHMathSciNetCrossRefGoogle Scholar
  37. [Née55]
    L. Néel, Energie des parois de Bloch dans les couches minces, C. R. Acad. Sci. Paris 241 (1955), 533–536.Google Scholar
  38. [Ott02]
    F. Otto, Cross-over in scaling laws: a simple example in micromagnetics, Proceedings of the International Congress of Mathematicians, Volume III (Beijing, 2002), 829–838, Higher Ed. Press, Beijing, 2002.Google Scholar
  39. [RS71]
    H. Riedel and A. Seeger, Micromagnetic Treatment of Néel Walls, Phys. Stat. Sol. (B) 46 (1971), 377–384.Google Scholar
  40. [SS04a]
    E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math. 57 (2004), no. 12, 1627–1672.zbMATHMathSciNetCrossRefGoogle Scholar
  41. [SS04b]
    E. Sandier and S. Serfaty, A product-estimate for Ginzburg-Landau and corollaries, J. Funct. Anal. 211 (2004), no. 1, 219–244.zbMATHMathSciNetCrossRefGoogle Scholar
  42. [Str94]
    M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), no. 5–6, 1613–1624.zbMATHMathSciNetGoogle Scholar
  43. [Tol97]
    J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal. 145 (1997), no. 1, 136–150.zbMATHMathSciNetCrossRefGoogle Scholar
  44. [Wal63]
    L. R. Walker, unpublished. Reported in J. F. Dillon Jr., Domains and Domain Walls, in Magnetism, Eds. G. R. Rado and H. Suhl, Academic Press, New York, 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthias Kurzke
    • 1
  • Christof Melcher
    • 2
  • Roger Moser
    • 3
  1. 1.Institute for Mathematics and its ApplicationsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations