Coastline Matching Process Based on the Discrete Fréchet Distance

  • Ariane Mascret
  • Thomas Devogele
  • Iwan Le Berre
  • Alain Hénaff

Abstract

Spatial distances are the main tools used for data matching and control quality. This paper describes new measures adapted to sinuous lines to compute the maximal and average discrepancy: Discrete Fréchet distance and Discrete Average Fréchet distance. Afterwards, a global process is defined to automatically handle two sets of lines. The usefulness of these distances is tested, with a comparison of coastlines. The validation is done with the computation of three sets of coastlines, obtained respectively from SPOT 5 orthophotographs and GPS points. Finally, an extension to Digital Elevation Model is presented.

Key words

data fusion quality control data matching Fréchet distance coastline monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. Int J of Computational Geometry & Applications 5(1–2):75–91CrossRefGoogle Scholar
  2. Coastchart project (2004) Demonstration of an EO based service for the update of marine charts, http://www.logicacmg.com/COASTCHART/index.aspx.htmlGoogle Scholar
  3. Deng M, Chen X, Li Z (2005) A Generalized Hausdorff Distance for Spatial Objects in GIS. In: Proc of the 4th ISPRS Workshop on Dynamic and Multidimensional GIS, University of Glamorgan, Archives of ISPRS, University of Glamorgan, pp 10–15Google Scholar
  4. Devogele T (2002) A new Merging process for data integration based on the discrete Fréchet distance. In: Richardson D, van Oosterom P (eds) Proc of the 10th Int Symp on Spatial Data Handling (SDH). Springer, pp 167–181Google Scholar
  5. Devogele T, Trevisan J, Raynal L (1996) Building a multi-scale database with scale-transaction relationships. In: Kraak, Molenaar (eds) Proc of the 7th Int Symp on Spatial Data Handling (SDH). Taylor & Francis, pp 337–351Google Scholar
  6. Dijkstra E (1959) A note on Two Problems in Connection with Graphs. Numerische Mathematik 1:269–271CrossRefGoogle Scholar
  7. Eiter T, Mannila H (1994) Computing Discrete Fréchet Distance. Technical report of Christian Doppler Labor für Expertensensyteme. Vienna University of technology, num. CD-TR 94/64Google Scholar
  8. Fuchs H, Kedem ZM, Uselton SP (1977) Optimal Surface reconstruction from planar contours. Graphics and image processing. ACM 20(10):693–702CrossRefGoogle Scholar
  9. Geomod (2005) CadSIS, http://www.geomod.fr/logiciels/dvpt/dvpt.htmGoogle Scholar
  10. UC2001/ESRI_UC_paper.htmlGoogle Scholar
  11. Harvey F, Vauglin F (1996) Geometric Match-processing: Applying Multiple Tolerances. In: Kraak, Molenaar (eds) Proc of the 7th Int Symp on Spatial Data Handling (SDH). Taylor & Francis, pp 155–171Google Scholar
  12. IGN (2003) BD ORTHO® Version 1, Descriptif de contenu http://www.ign.fr/telechargement/MPro/produit/BD_ORTHO/DC_BDORTHO.pdfGoogle Scholar
  13. International Hydrographic Organization (2005) HYDROGRAPHIC DICTIONARY 5th ed, Special Publications No32 of IHOGoogle Scholar
  14. Le Berre I, Henaff A, Wenzel F, Giraudet J (2004) Cartographie synthétique de l’environnement littoral du Finistère, exploitation de SPOT pour la cartographie de l’estran, du trait de côte et de l’occupation du littoral. In: Rapport final, Appel à proposition CNES/IFEN “Suivi du littoral par SPOT 5”, GEOMER laboratory/Cetmef/DDE29Google Scholar
  15. Mustière S (2006) Results of experiments on automated matching of networks at different scales. In: Joint ISPRS Workshop on Multiple Representation and Interoperability of spatial Data, Hannover, Germany, February 2006Google Scholar
  16. Podobnikar T (2004) Production of integrated digital terrain model from multiple datasets of different quality. Int J of Geographical Information Sciences 19(1), January 2005:69–89CrossRefGoogle Scholar
  17. Sederberg TW, Greenwood E (1992) A Physically based Approach to 2-D shape blending. SIGGRAPH’92, 26(2):25–34Google Scholar
  18. TCI software (2005) Adjust — True Rubbersheeting inside of AutoCAD, http://tcicorp.com/html/adjust.htmlGoogle Scholar
  19. Veregin H (1999) Data quality parameters. In: Longley, Goodchild, Maguire, Rhind (eds), Geographical Information systems. John Willey & Sons Inc., pp 177–189Google Scholar
  20. Whitfield M, Pepper J (2003) Integrated coastal zone-Data research project (ICZMap®). http://www.thsoa.org/hy03/4b_2.pdfGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ariane Mascret
    • 1
  • Thomas Devogele
    • 1
  • Iwan Le Berre
    • 2
  • Alain Hénaff
    • 2
  1. 1.Naval academy Research Institute (IRENav), LanvéocBrest NavalFrance
  2. 2.GEOMER Laboratory, LETG UMR 6554 CNRSInstitut Universitaire Européen de la Mer (UBO), Technopôle Brest-IroisePlouzanéFrance

Personalised recommendations