Characteristic 0 and p Analogies, and some Motivic Cohomology

  • Manuel Blickle
  • Hélène Esnault
  • Kay Rülling


Chow Group Fano Variety Singular Variety Local Cohomology Module Smooth Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ax, J.: Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berthelot, P., Bloch, S., Esnault, H.: On Witt vector cohomology for singular varieties, preprint 2005, 42 pages.Google Scholar
  3. 3.
    Berthelot, P., Ogus, A.: Notes on crystalline cohomology. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978. vi+243 pp.zbMATHGoogle Scholar
  4. 4.
    Blickle, M., Bondu, R.: Local cohomology multiplicities in terms of local cohomology, 2004, to appear in Ann. Inst. Fourier.Google Scholar
  5. 5.
    Blickle, M.: Lyubeznik’s invariants for cohomologically isolated singularities, preprint 2005.Google Scholar
  6. 6.
    Blickle, M.: The intersection homology D-module in finite characteristic, Math. Ann. 328 (2004), 425–450.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bloch, S.: Algebraic K-theory and crystalline cohomology, Publ. Math. I.H.É.S. 47 (1977), 187–268.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bloch, S.: Lectures on Algebraic cycles, Duke University Mathematics Series, IV, (1980).Google Scholar
  9. 9.
    Bloch, S.: Algebraic cycles and higher K-theory, Adv. in Math. 61, No.3 (1986), 267–304.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bloch, S., Esnault, H.: An additive version of higher Chow groups, Ann. Sci. École Norm. Sup. 4 36, No. 3 (2003), 463–477.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bloch, S., Esnault, H.: The additive dilogarithm, Doc. Math., J. DMV Extra Vol. (2003), 131–155.Google Scholar
  12. 12.
    Bloch, S., Esnault, H., Levine, M.: Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces, Am. J. of Mathematics, 127 no.1 (2005), 193–207.zbMATHMathSciNetGoogle Scholar
  13. 13.
    Bkle, G., Pink, R.: Cohomological Theory of crystals over function fields, uncirculated preprint, 2005.Google Scholar
  14. 14.
    Borel, A. et al: Intersection cohomology, Progress in Mathematics, vol. 50, Birkhäuser Boston Inc., Boston, MA, 1984, Notes on the seminar held at the University of Bern, Bern, 1983, Swiss Seminars.Google Scholar
  15. 15.
    Borel, A., Grivel, P.-P, Kaup, B., Haefliger, A., Malgrange, B., and Ehlers, E.: Algebraic D-modules, Academic Press Inc., Boston, MA, 1987.Google Scholar
  16. 16.
    de Jong, A. J.: Smoothness, semi-stability and alterations, Publ. Math. I.H.É.S. 83 (1996), 51–93.zbMATHGoogle Scholar
  17. 17.
    Deligne, P.: Théorie de Hodge II, Théorie de Hodge III, Publ. Math. I.H.É.S. 40 (1971), 5–57, 44 (1974), 5–77.zbMATHMathSciNetGoogle Scholar
  18. 18.
    Deligne, P.: La conjecture de Weil. I, La conjecture de Weil. II, Publ. Math. I.H.É.S. 43 (1974), 273–307, 52, (1980) 137–252.MathSciNetGoogle Scholar
  19. 19.
    Deligne, P.: Théorème d’intégralité, Appendix to Katz, N.: Le niveau de la cohomologie des intersections complètes, Exposé XXI in SGA 7, Lect. Notes Math. vol. 340, 363–400, Berlin Heidelberg New York Springer 1973.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Deligne, P., Esnault, H.: Appendix to “Deligne’s integrality theorem in unequal characteristic and rational points over finite fields”, preprint 2004, 5 pages, appears in the Annals of Mathematics.Google Scholar
  21. 21.
    Deligne, P., Katz, N.: Seminar de Geometrie Algebrique, SGA 7.II, Lect. Notes Math. vol. 340 Spinger 1973, Berlin Heidelberg New York.Google Scholar
  22. 22.
    Emerton, M., Kisin, M.: Riemann-Hilbert correspondence for unit F-crystals, Astisque 293 (2004), vi+257 pp.Google Scholar
  23. 23.
    Emerton, M., Kisin, M.: An introduction to the Riemann-Hilbert correspondence for unit F-crystals., Geometric aspects of Dwork theory. Vol. I, II, 677–700, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.Google Scholar
  24. 24.
    Esnault, H.: Hodge type of subvarieties of ℙn of small degrees, Math. Ann. 288 (1990), 549–551.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Esnault, H., Nori, M., Srinivas, V.: Hodge type of projective varieties of low degree. Math. Ann. 293 (1992), 1–6.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Esnault, H.: Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. math. 151 (2003), 187–191.zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Esnault, H.: Eigenvalues of Frobenius acting on the ρ-adic cohomology of complete intersections of low degree, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 317–320.zbMATHMathSciNetGoogle Scholar
  28. 28.
    Esnault, H., Katz. N: Cohomological divisibility and point count divisibility, Compositio Mathematica 14101 (2005), 93–100.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Esnault, H.: Appendix to “Congruences for rational points on varieties over finite fields” by N. Fakhruddin and C. S. Rajan, Math. Ann. 333 (2005), 811–814.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Esnault, H.: Deligne’s integrality theorem in unequal characteristic and rational points over finite fields, preprint 2004, 10 pages, appears in the Annals of Mathematics.Google Scholar
  31. 31.
    Fakhruddin, N., Rajan, C. S.: Congruences for rational points on varieties over finite fields, Math. Ann. 333 (2005), 797–809.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Fujiwara, K.: A Proof of the Absolute Purity Conjecture (after Gabber), in Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Mathematics 36 (2002), Mathematical Society of Japan, 153–183.zbMATHMathSciNetGoogle Scholar
  33. 33.
    Garcia-Lòpez, R., Sabbah, C.: Topological computation of local cohomology multiplicities, Collect. Math. 49 (1998), no. 2–3, 317–324, Dedicated to the memory of Fernando Serrano.zbMATHMathSciNetGoogle Scholar
  34. 34.
    Grothendieck, A.: Formule de Lefschetz et rationalité des fonctions L, Séminaire Bourbaki 279, 17-ième année (1964/1965), 1–15.Google Scholar
  35. 35.
    Hartshorne, R., Speiser, R.: Local cohomological dimension in characteristic p, Annals of Mathematics 105 (1977), 45–79.zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Hesselholt, L., Madsen, I.: On the K-theory of nilpotent endomorphisms, Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math. 271, Amer. Math. Soc., Providence, RI (2001), 127–140.Google Scholar
  37. 37.
    Huneke, C. L., Sharp, Ro.Y.: Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765–779.zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline, Ann. Éc. Norm. Sup. 4 12 (1979), 501–661.zbMATHMathSciNetGoogle Scholar
  39. 39.
    Kashiwara, M.: Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979–1980, École Polytech., Palaiseau, 1980, pp. Exp. No. 19, 7.Google Scholar
  40. 40.
    Katz, N.: On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Kollár, J.: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32 (1996), Springer-Verlag, Berlin, 1996.Google Scholar
  42. 42.
    Lang, S.: Cyclotomic points, very anti-canonical varieties, and quasi-algebraic closure, preprint 2000.Google Scholar
  43. 43.
    Lyubeznik, G.: Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. math. 113 (1993), no. 1, 41–55.zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Lyubeznik, G.: F-modules: an application to local cohomology and D-modules in characteristic p > 0, Journal für reine und angewandte Mathematik 491 (1997), 65–130.zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Manin, Yu.: Notes on the arithmetic of Fano threefolds, Compos. math. 85 (1993), 37–55.zbMATHMathSciNetGoogle Scholar
  46. 46.
    Mebkhout, Z.: Cohomologie locale des espaces analytiques complexes, Ph.D. thesis, Université Paris VII, 1979.Google Scholar
  47. 47.
    Nesterenko, Y. P., Suslin, A.: Homology of the general linear group over a local ring, and Milnor’s K-theory, Math. USSR-Izv. 34, No.1 (1990), 121–145.zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Rülling, K.: The generalized de Rham-Witt complex over a field is a complex of zero-cycles, preprint 2005.Google Scholar
  49. 49.
    Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique p, in Symposium internacional de topología algebraica (International symposium on algebraic topology), 24–53, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City, 1958.Google Scholar
  50. 50.
    Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory, K-theory 6, No.2 (1992), 177–189.zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Voevodsky, V.: Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 7, 351–355.zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Walther, U.: On the Lyubeznik numbers of a local ring, Proc. Amer. Math. Soc. 129 (2001), No. 6, 1631–1634 (electronic).zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Witt, E.: Zyklische Körper und Algebren der Charakteristik p vom Grad p n. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenk örper der Charakteristik p, J. Reine Angew. Math. 176 (1936), 126–140.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manuel Blickle
    • 1
  • Hélène Esnault
    • 1
  • Kay Rülling
    • 1
  1. 1.MathematikUniversität Duisburg-EssenEssenGermany

Personalised recommendations