Statistical Features of Earthquake Temporal Occurrence

  • Á. Corral
Part of the Lecture Notes in Physics book series (LNP, volume 705)


The physics of an earthquake is a subject with many unknowns. It is true that we have a good understanding of the propagation of seismic waves through the Earth and that given a large set of seismographic records we are able to reconstruct a posteriori the history of the fault rupture (the origin of the waves). However, when we consider the physical processes which lead to the initiation of a rupture with a subsequent slip and its growth through a fault system to give rise to an earthquake, then our knowledge is really limited. Not only the friction law and the rupture evolution rules are largely unknown, but the role of many other processes such as plasticity, fluid migration, chemical reactions, etc., and the couplings between them, remain unclear [1, 2].


Poisson Process Hazard Rate Stationary Seismicity Aftershock Sequence Recurrence Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Earthquake Science and Seismic Risk Reduction, Ed. F. Mulargia, R. J. Geller, Kluwer, Dordrecht (2003)Google Scholar
  2. 2.
    J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein, C. Sammis, Rev. Geophys. 41, 1019 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Bak, K. Christensen, L. Danon, T. Scanlon, Phys. Rev. Lett. 88, 178501 (2002)CrossRefGoogle Scholar
  4. 4.
    Y. Y. Kagan, Physica D 77, 160 (1994)CrossRefGoogle Scholar
  5. 5.
    D. L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge (1997)Google Scholar
  6. 6.
    T. Utsu, Pure Appl. Geophys. 155, 509 (1999)CrossRefGoogle Scholar
  7. 7.
    T. Utsu, Statistical Features of Seismicity. In: International Handbook of Earthquake and Engineering Seismology, Part A, Ed. W.H. K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger, pp. 719–732, Academic Press, Amsterdam (2002)Google Scholar
  8. 8.
    P. A. Reasenberg, L. M. Jones: Science 243, 1173 (1989)Google Scholar
  9. 9.
    T. Utsu, Y. Ogata, R.S. Matsu’ura, J. Phys. Earth 43, 1 (1995)Google Scholar
  10. 10.
    A. Corral, Nonlinear Proc. Geophys. 12, 89 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Corral, Tectonophys., accepted (2006)Google Scholar
  12. 12.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)Google Scholar
  13. 13.
    P. Shearer, E. Hauksson, G. Lin, D. Kilb, Eos Trans. AGU 84 (46): Fall Meet. Suppl., Abstract S21D–0326 (2003) ftp/ catalogs/SHLK/Google Scholar
  14. 14.
    A. Corral, Phys. Rev. Lett. 92, 108501 (2004)CrossRefGoogle Scholar
  15. 15.
    Handbook of Mathematical Functions, Ed. M. Abramowitz, I.A. Stegun, Dover, New York (1965)Google Scholar
  16. 16.
    R. Shcherbakov, G. Yakovlev, D.L. Turcotte, J.B. Rundle, Phys. Rev. Lett. 95, 218501 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Corral, Phys. Rev. E 71, 017101 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Ogata, Pure Appl. Geophys. 155, 471 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Helmstetter, D. Sornette, Phys. Rev. E 66, 061104 (2002)CrossRefGoogle Scholar
  20. 20.
    J.D. Kalbeisch, R.L. Prentice, The Statistical Analysis of Failure Time Data, Wiley, New York (1980)Google Scholar
  21. 21.
    Y.Y. Kagan, D.D. Jackson, Geophys. J. Int. 104, 117 (1991)Google Scholar
  22. 22.
    W. Feller: An Introduction to Probability Theory and Its Applications, 2nd edn., vol 2, Wiley, New York (1971)Google Scholar
  23. 23.
    G.J. Székely, Paradoxes in Probability Theory and Mathematical Statistics, Reidel, Dordrecht (1986)Google Scholar
  24. 24.
    M. Schroeder, Fractals, Chaos, Power Laws, Freeman, New York (1991)Google Scholar
  25. 25.
    P.M. Davis, D.D. Jackson, Y.Y. Kagan, Bull. Seismol. Soc. Am. 79, 1439 (1989)Google Scholar
  26. 26.
    D. Sornette, L. Knopoff, Bull. Seismol. Soc. Am. 87, 789 (1997)Google Scholar
  27. 27.
    D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York (1988)Google Scholar
  28. 28.
    L.P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, World Scientific, Singapore (2000)Google Scholar
  29. 29.
    W.D. McComb, Renormalization Methods, Clarendon Press, Oxford (2004)Google Scholar
  30. 30.
    K. Christensen, N.R. Moloney, Complexity and Criticality, Imperial College Press, London (2005)Google Scholar
  31. 31.
    A. Corral, Phys. Rev. Lett. 95, 028501 (2005)CrossRefGoogle Scholar
  32. 32.
    V. Livina, S. Tuzov, S. Havlin, A. Bunde, Physica A 348, 591 (2005)CrossRefGoogle Scholar
  33. 33.
    V.N. Livina, S. Havlin, A. Bunde, Phys. Rev. Lett. 95, 208501 (2005)CrossRefGoogle Scholar
  34. 34.
    A. Corral, Phys. Rev. Lett. 95, 159801 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Helmstetter, Y.Y. Kagan, D.D. Jackson, Bull. Seismol. Soc. Am. 96, 90 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Corral, Universal earthquake-occurrence jumps, correlations with time, and anomalous diffusion. Submitted (2006)Google Scholar
  37. 37.
    A. Corral, Phys. Rev. E 68, 035102 (2003)CrossRefGoogle Scholar
  38. 38.
    G. Molchan, T. Kronrod, Geophys. J. Int. 162, 899 (2005)CrossRefGoogle Scholar
  39. 39.
    A. Corral, Physica A 340, 590 (2004)CrossRefGoogle Scholar
  40. 40.
    J. Davidsen, C. Goltz, Geophys. Res. Lett. 31, L21612 (2004)CrossRefGoogle Scholar
  41. 41.
    A. Corral, K. Christensen, Phys. Rev. Lett. 96, accepted (2006)CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Á. Corral
    • 1
  1. 1.Departament de Física, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations